US009460417B2

a2 United States Patent

Strassner

(10) Patent No.:

45) Date of Patent:

US 9,460,417 B2
Oct. 4, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

USING DYNAMIC OBJECT MODELING AND
BUSINESS RULES TO DYNAMICALLY
SPECIFY AND MODIFY BEHAVIOR

Applicant: Futurewei Technologies, Inc., Dallas,

2004/0230681 Al*

(56)

References Cited

U.S. PATENT DOCUMENTS

5,727,158 A *

3/1998

7,434,109 B1* 10/2008

7,865,617 B1*

2005/0021723 Al*

2008/0071714 Al*

* cited by examiner

1/2011
11/2004
1/2005

3/2008

Bouziane GO6F 17/30569
707/E17.006

Stabileccccoe... HO04L 43/04
709/223

Pulleyn HO04L 29/12047
709/225

Strassner G06Q 10/10
709/226

Saperiac....... HO4L 41/022
709/223

Menichc......... GO6N 5/041
706/45

Primary Examiner — Duyen Doan

(74) Attorney, Agent, or Firm — Schwegman Lundberg &

X (US)

Inventor: John Strassner, San Jose, CA (US)

Assignee: Futurewei Technologies, Inc., Plano,
X (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 622 days.

Appl. No.: 13/916,993

Filed: Jun. 13, 2013

Prior Publication Data

US 2014/0279808 Al Sep. 18, 2014

Woessner, P.A.
(57

ABSTRACT
A system and a method are provided for using dynamic

object modeling and one or more types of policy rules to

dynamically specify and modify system behavior at various
levels of abstraction, including business, system, and device

Related U.S. Application Data

Provisional application No. 61/798,401, filed on Mar.
15, 2013.

implementation. The system and method allow for specify-
ing, instantiating, managing, and removing sets of tempo-
rary or permanent additions and/or modifications to the

attributes or behavior of a set of objects, relationships,

Int. CL.

GOGF 15/177 (2006.01)

G06Q 10/10 (2012.01)

G06Q 10/06 (2012.01)

U.S. CL

CPC ..o G06Q 10/10 (2013.01); GO6Q 10/06
(2013.01)

Field of Classification Search

CPC e G06Q 10/10

USPC o 709/221, 225-226

See application file for complete search history.

CLI from

102
vendor 1 "

CLI from
Vendor 2

y T
o
P

MiBs and PIBs

scripts, and/or applications of a device, module, subsystem,
or system, without having to change the underlying code of
these objects, relationships, scripts, and/or applications. The
systems and methods enable attributes, methods and/or
relationships (e.g., associations, aggregations, and/or com-
positions), as well as constraints on any of these elements,
to be dynamically added or changed at runtime without
changing any underlying code of the components being
managed by instantiating and manipulating object instances
in accordance with certain policy rules.

20 Claims, 17 Drawing Sheets

Uniform Data {
Representation g

S T

U.S. Patent Oct. 4, 2016 Sheet 1 of 17

Figure 1

CLI from

102
Vendor 1 -

{

Wt
/&"_::;/%

CLI from

Vendor 2 \\
’

MiBs and PiBs

US 9,460,417 B2

100

U.S. Patent Oct. 4, 2016 Sheet 2 of 17 US 9,460,417 B2

Figure 2 -

ny P800
8

S 214
% \y 202,

Vendor Data User Device
Model Hub

(218

Vendor Data

Model Router
220

Vendor Data

Model Modem \
222

Vendor Data
Model Switch

202n

Database

Managing 204

Entity

US 9,460,417 B2

Sheet 3 of 17

Oct. 4, 2016

U.S. Patent

¢ 2In31q

pabeueyy bBuleg WwajsAs 08¢
@Nm/ vmm/ Nmm/
— —_ \ \ \
3 II; > Wa 21607 —
m — — 3 Juawabeuep g) m;
2 |: | 2 2AEE
pafieuepy pabeuepy = . - S ol | =
aqoyhug | | eq oy HAmug E o N s /ovm ‘ ‘u
E M wﬂ m A3
fmmm /omm m | —] J 2 Jawasbeuep satiolisoday eleQ
. seoepIa)U| Juswabeue|y — -
00) 95¢ _ _
06¢ T 111 se0epajU] JUaWeBeuRp 0ge 0lL€ Oct
A
wa)sAg juswiebeue
\\. gm/ T T T Ll N
(ejeq) synsay juswabeueyy < w» v 1G¢

spuewwon Juewabeueyy

mmm\

(e1eq) synsey Juswsbeuepy

Anu3 sjowsy

¢se

walsAg pabeuepy 00€

|I||I|||||I|II||||I|||'|L

/ spuewiwon) juswabeuepy

U.S. Patent Oct. 4, 2016 Sheet 4 of 17 US 9,460,417 B2

Figure 4

—
Management
: Device
Interpreter 406 400
Processingand | 408
Management Logic
414

Information | Processor
Model] 402
410 R 416 Memory
Data Model ,/ 404

Function /418

Repository ﬂ
L

U.S. Patent Oct. 4, 2016 Sheet 5 of 17 US 9,460,417 B2

| Request or Event Trigger W 502
| Managing Device Receives Request or 1rigger }\f 504
l Managing Device Parses Request or Trigger J/L- 506

Management Device Retrieves Knowledge from the Information Model in L
case the Request Contains Unkown or Ambiguous Terms 508

{

Management Device Queries Data Model to Retrieve Objects, Code Sections,
and Other Data to Implement Portions of Request = 510

A
Compare Retrieved Configuration Data to Requested Configuration e

512
YES

514

| Perform Object Stitching ’\:— 516

Y
Apply Stitched Objects to Update Device
Configurations

518

)" 522
1.
520 ™7 =7)/—r{ Log Current Context ‘
<4 ?
e !

YES Perform Error
Processing

o i\jszﬁ /LC
N_'\

All Functlonalll'y Covered -

Figure 5

US 9,460,417 B2

Sheet 6 of 17

Oct. 4, 2016

U.S. Patent

29 2IN3L]

$1991q0 paseuewt JO Sd
puR BjRpRISU JO momb
U09M13q SUOHBIIWI]

0%9

0€9
reregelegeEp LS
omolﬁ Ul up
BI2EI5HY gegessennu3 -
| 0<9 M
BIEp ONUBWDS pue ‘d3esn Y
4 [4 <
UOISIdA ‘A11IN93s ‘SO0 Buns - yewogpoalgo

Bumg - weongeslgo
Bung - vonduossp
fuulg - swepnuoWLIOD

Apuz100Y

019

("'~ ‘suonyeorjdde ‘s10AI0S
‘s101n01) 5300[q0 paSeuely

pa049paf2q 0} SAWAYDS
Furuey JUSIIP s9[qeuyg

US 9,460,417 B2

Sheet 7 of 17

Oct. 4, 2016

U.S. Patent

(9 einbid
- G289 ¥ES £z 2ea » 425
J 1 1 f J
M\ 059 T Joineuag | AU sjdesheUBLIUN AU eigeeliRlel | |UDHBZIUBDIC () U0SIB
| _ |
ele] E1B(Ble Alug F
ey U 0TES 100 - peziSaUIUAS 8|
el ee | \\ BlB(] BlOl SBH AT LT
w {53 m “
| e O
- 29 H ovs
A jo0y
/
oty ~

US 9,460,417 B2

Sheet 8 of 17

Oct. 4, 2016

U.S. Patent

SuOlejouly pue ejepelsiy ppy elepeep Auy sishjeuy sojewbeld 97/
0gs / 8¢L
suoljejouuy pue elepele|y ppy UONN|OSaY aoualRey -oQ uloded 072
N
74 /
-3
SUOIBJOUUY pue Blepelay PPy Buileqe ooy onuewss wioged L/
a1/ 4
—_
SuojjejouUy pug BlepRISA PPy eIepEro Auy UORRNOIQESIQ 3SUSS PIOM PUE | g1/

/

474

0L

uonubooay Aiug psweN wWiopad

SUONBIOUUY pUR Blepels PPY

/, 9IN31]

90L

(PIEPEION AUy

0L

T

90l esied sonpoid — Y

el AIOJUSAUJ 108]10)) 0} Jsanbay asied

Q)

0L

US 9,460,417 B2

Sheet 9 of 17

Oct. 4, 2016

U.S. Patent

918 708
08 l\ Mn 818 \\ \\
i . \ $0]R]S SUIBJLIOD
<
anyAalioduonoun- AN aMANOL YO 8JNA21/0ciIe0D a8l up L [euryospeiers
v £08 N 208
url c\m , uoIISUE] | 8]B]S SWRAODBINMADIOL
~ - =] slelegeiels
ejeRIeSeH8INMAONOo ~ :
eje@ejaNeInyAod TeqEIWSEHOIN 0] ainmonngeyAaiiod U0 \ ug |auyoepeelS
e
018 V
Fi8 sjeeg 908

jdasuodAalod

cI8

uolysuell spEISSINYAoliod

808 R

g 231

US 9,460,417 B2

Sheet 10 of 17

Oct. 4, 2016

U.S. Patent

Buissanoid Joiig wioled |—9¢6 S109[qQ |1 9AeS

—7t6

7 1

£

6 2IN31L]

xejuog Bo7 pue ejepelsiy slepdn $18lqo I 1o}

i elepelsly aiepdn
ON €6
[Ale)
8¢ SJA

[BPOJ Eleq & Ul JuaWwa[3 [3poly
paUDIBl Yo 10§ 109[g0 Ue Sleluessy|

- 926

JM /omm

<

S3A

21
N ¢ 916

{OPO BIB(€ Ui SIUBWS|T [9POJ JO 195 10 jusLls|3
[8POW SUQ 15227 Je 0} [9pOW LUOHBLLIOW] 8L} Ul SJUStLS|T
[P0V JO 193 J0 Juswa|3 [9PON PRYaIE) YoBT dep

S3A

N0 A3
ON

1 ¥
SAA [
0 GZ6 [SPOIN UOHELLIOM| BY) Ul JUBWS|T [BPON BUQ ISBST | 016
ON JE 0] SWs | 0185 1o wis] umoun yoes depy
|9POJ\ UONBULIOJU| BU} WoH JUSWS|T [9P0A MBN YoB3 10} 78 oL UmouUn (959 104 _o08
1OPON BIB(] B WOJJ JUSWI|T [SPOW MBN 8UQ IS8T Je 1onsuo)
S3A ¥
M0 —¢€26 8198[q0 palospy Iy
ON J0 B)EpEIDI 2jepdn
)
ISPOYY UOHELLLIOWI 8y} WOy —_— /, uaAg wouy IndinQ pasied szfjeu -
JUBLS|T [OPOIA MaN BUQ) 18887 12 JonJ)suoD) ¢k 316 uoA3 WY NANG PIsied SzA=UY v06
(s)uwua] umouun Jo Joineysg pue sainjes 026 SI9IUNOY pue Wa]SAS az|[eliu) —¢06
Bunuasaiday Jo} BINONNS IR JONASU0D X

T

US 9,460,417 B2

Sheet 11 of 17

Oct. 4, 2016

U.S. Patent

eQ om31]

Z80}] Buissaoid Joug wioped

t

k)

spoelqQ |1y enes

_, //wme

001 ~_-Jxewoy 607 pue epepejsyy ejepdn

ejepelsiy sjepdp

51080 Iy 40}

ON

[M /@Nor

M0
veol SN

[BPOY Eleq € U JusWs|d [3pojy
payalepy yoes Joj 108lqQ Ue sjenuelsy|

T

~——— 201

[OPO BIB(B Ul SJUSWS|J [SPOW 10 18S 10 Juslialg
[SPOJ UQ 1SEST 1B O} [P0y UOKeLLIOY| U} U] Sjuawe|g
[8pOW JO 195 J0 JuBWa[T [3pO Peydrel Yoes de

0201

6 @bl ‘gL6
%00/g 01 09

[SPO\ UORBULIOJ] o} Ul JUSWS|T |opOopy

BUQ) 19897 18 0} SWID] §019S Jo ula] Yoe] dep ~———9101

6 2inbl4 '806
42019 0L 09

SuSWYERY pue peojfed Juang esied 7101

M_T

peojfed juang yoeg o4 | 0.0}

lapeaH 1aA7 asied 1001

2

sIeyunon pue waiskg aziepiu) — <001

US 9,460,417 B2

Sheet 12 of 17

Oct. 4, 2016

U.S. Patent

9601 ~— BuIssasoid 1017 Wiopdd

¥G0l

\mr safueyn aneg pue ‘ejepejsj 0501

olepdn ‘sjoslqo patosyy ebuey

Xejuon o pue ejepela|y syepdn

S3A
M0 8v0l

ON

apoN Yoe3 Aq pajussaldey sebuey) uoleinbiyuc) Alddy ‘sjny Aoljod yoe3 io4

——— 9¥0l

(s)ured [ewndo puid | ¥401

qo1 2m31g i

1

T

gouspuade(Aq sa|ny Ad||od s1emy-IX8juoD 18pI0 - 7401

sajny Ao1104 |Ie Jo ainjonys eleq sjqeiieny paziwndQ eesld k_0y0l

US 9,460,417 B2

Sheet 13 of 17

Oct. 4, 2016

U.S. Patent

puooag & U sjuswa|d |opely pedde)y e101g

Anyuge|geobeuepy e 0 JOIABYSE puB $81NJBS 4 B} Jussaidsy
gL € 0 5199000 pucoss o 1§ By} Woy 10l BUQ SEUEISU]
ﬂ ‘FL1| yooig woy [Spo eleq Yoed Ul juswa(g [9PO Yoed Jo4
Buissaao.id ~
Jol3 8hLl
uopsd s108lgQ puooss Jo 185 e se Alojsoday oLl

1

8chl

9Ll

01 L1 %00ig ut uonelado yoe3 &nosxg

i

5080 PAIYL JO 19 BU} W4 saluTo|qeabeue)y sralsy

]

uonesedo 1si14 aAsLaY

— (L

T

sj03lq0 PUIYL Jo 103 B Se Alojisoday paiyL e ol sposlqo eleg sialg

// [P0 Ble SUQ 18887 Je Ul JUSWIS[T [SPOA BUQ) 1SEST
veLL 12 0} 2} . %90Ig Ul paiyjuap| [epoy uoiewuiouf stywioyy | Pl
awa)3 |spoy Yoe3 Jo Buiddely suyasg ‘ueneiadg yoe3 o4
cell \m'
uollesadQ ayy Ui peoudiaey s199ld0
Bujsssacid 0} [2pOJA LonBULIoju| BY} uf jusws|F [spop duQ Jsee k- 2L
10413 1e jo Buiddeyy 2 auiaq ‘pl 1} Yool ul uojesedg Yyoed Jo4
wopad sd'

saiuge|qesbeueyy Jo 195 B uo

suoneiadQ) 10 185 B Wiopad o} }senbey siejsues| [OLH

T

10661 10 1sanhay aneosy

1747 \‘r

8011

s190lq0) Js114 10 183 & e Alojisoday §sij B OJUf (SO UOHeULIOM| 21013

T

S[SpO B2 pUe UCIIBULIOjU] SAUISY

voLL 90LL

T

0zl waisAg Juawsbeue azjemuj

-~ — C0LL

t

US 9,460,417 B2

Sheet 14 of 17

Oct. 4, 2016

U.S. Patent

(e8) 71 21nS1yg
.HOZ . \j

§ SPUBLILLOY) D10

A4

[4¥A2 =N

0€Z1
8ccl

ejepe1o| Buisn Buiddeyy youuz

S3A

z MO 3
b2zl -

[OPO| BIB(BUQ 1SBET JE Ul JUswWalT (8RO BUQ) Jsea]
1 O} [OPOJN LOEULIOu| 8} Ul JuswWalg [8pojy Yoes dei

Buisseonid
Jjoug
wicpad

8121 . //
0

aeel

(] 'Poseq ainonig 'paseq ainjesd buisn [epop uonewlo]

BuIYdlE| SSOUPSIe|ey OlUBWISS JO/pUE ‘PISE]-ioiARySg

SU} Ul SIUSLWS]T (3O} 210 10 BUQ O} ()WL Yorey

soyu3ejqesbeueyy o) sjuswa3 pesieddey | 2igl

{7 by ses) @91 ssledseal)y |- 01zl
/

r

s108qQ) 18114 J0 18G € Se Asoyisaday 15114 E Ol [SPOJA] UONEULIOM| 810}

\—r

SISO Ble(PUB LOLBULIOJU| SASLISY

T

wasAg Juatwabeueyy ozifeniu| 7021

ok

!

196611 10 Juead e Bulejsuel] Jebbu} 1o isenbay ensoey | 80ZL

aocl

US 9,460,417 B2

Sheet 15 of 17

Oct. 4, 2016

U.S. Patent

103[qo mau e Aq

ssasoud Suiddeam ayy Suneadas paddeam 109[qo je1Hul Y3 109([go |enui ayl
:uonisodwo) 3[qO (4 :uonyisodwio) 123fqo (@ :uommsodwio) 13(qo (P
ziEL . s
1/1 v ¥
(oo} (Jooy (Jooy () 00}
sopeiio Jrawdio | g | \yweleo | eawelao & wsloo
09€l
08¢l olcL
Joineyag map suluaqg Jolaeyag map sutulyag Joiaeyag maN 3ululyaqg
1oy wistueydaA |eaidAL (2 Joj wsiueyaan |ealdAl (g Joj wisiueyaan [eatdA) (e
el

gcel - j
S955ED
j 10 $s8lD sassep iUt
P SSe|D £QsseD SOSSeI0 81819109
8]8I0U0D /1
sseo

ocel
preL
OVEL —— pessie 055810 v ssepn g sse v ssern
20 s SR
ssep ¥ ¥ \ u
PeiSae
ozel olel Slel oLElL
osel wsep
028} — pessqe 2In31
) I\ m ﬁ . _mH

US 9,460,417 B2

Sheet 16 of 17

Oct. 4, 2016

U.S. Patent

P 2In3Lg

\r4 4"

)

9Lyl

¢ s19l[q0 aio

rivl
puissasold
civl loug
wiopad
algo pebueyn Buipuodsauo) arsleY fL___-0oLbl
[y
S|OPOIA Ble(IV 40 siuawel] [SpoN liv 104 t___-80vL
A
<

Buissasold
Joug
wiopad

T

7

<>

S[epoly ejed pue uonewlojul arstey | 90vL

woa)sAg Juswebeue szieliu] L 0¥l

eje(sleplieA 0} 1sanbay ooy L zop)

U.S. Patent Oct. 4, 2016 Sheet 17 of 17 US 9,460,417 B2

Figure 15

1502 z

Processor S 1504

Main Memory \f_ 1506

Display Interface |4

!

: 1512
Communication Hard'D|5k | 1514
Infrastructure Drive
{Bus)
Removable . 1518
/b——'\ Memory Removable
] / Storage " S;Offige
Device evice
1516 = 1500
Removable [
1520 — 7 Interface » Storage
Device

Communication L
—Communication Path
interface }

L 1526

1524

US 9,460,417 B2

1
USING DYNAMIC OBJECT MODELING AND
BUSINESS RULES TO DYNAMICALLY
SPECIFY AND MODIFY BEHAVIOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the priority benefit of U.S.
Provisional Patent Application Ser. No. 61/798,401, filed on
Mar. 15, 2013, which is herein incorporated by reference.
The present application is further related to the following
commonly-owned U.S. patent applications:

Ser. No. 11/422,681, entitled Autonomic Computing

Method and Apparatus, filed Jun. 7, 2006, now issued
as U.S. Pat. No. 7,542,956;

Ser. No. 10/662,038, entitled System and Method for
Mapping Between and Controlling Different Device
Abstractions, filed Sep. 12, 2003, now issued as U.S.
Pat. No. 7,558,847,

Ser. No. 12/476,866, entitled Managing a Computer Net-
work, filed Jun. 2, 2009, now issued as U.S. Pat. No.
8,010,650; and

Ser. No. 12/124,560, entitled Autonomous Operation of
Networking Devices, filed May 21, 2008, now issued
as U.S. Pat. No. 8,019,838

all of which are herein incorporated by reference.

FIELD OF INVENTION

The present invention also relates to using dynamic object
modeling and business policy rules (hereinafter referred to
as business or policy rules) to dynamically specify and
modify behavior of system resources, architecture, hard-
ware, and/or data objects, at runtime without changing any
code. Without limitation, the present invention relates to
systems and methods for specifying, instantiating, manag-
ing, and/or removing sets of temporary or permanent addi-
tions and/or modifications to the attributes or behavior of a
set of objects, architecture, hardware, relationships, scripts,
and/or applications of a module, subsystem, or system,
without having to change any underlying code of these
objects, architecture, hardware, relationships, scripts, and/or
applications.

BACKGROUND OF THE INVENTION

Network management in particular, as well as other forms
of distributed management systems (e.g., storage manage-
ment, server management, cloud centers, data centers),
requires a high degree of flexibility. This is due to the fact
that distributed network management requires interaction
with many types of users typically having different levels of
access to system resources, devices having unique configu-
rations and divergent command syntaxes, as well as pro-
cessing a multitude of events or triggers that may occur
within the system. Current system architectures use a static
approach that may account for some of the unique events,
but are generally incapable of dynamically responding to
new or unforeseen events that were not explicitly accounted
for in advance.

For example, networking architectures and network
devices, such as routers and switches, as well as their
configurations, are becoming increasingly complex both in
structure and functionality. Such complexities require net-
work engineers or other personnel to know hundreds or
thousands of vendor-specific commands or syntaxes and to
master both the hardware and software idiosyncrasies of

15

25

30

35

40

45

55

60

2

each differently manufactured networked device in order to
successfully configure and manage a network. But tradi-
tional network management techniques, which include net-
work device configuration and maintenance processes, fail
to amply provide network administrators (or any network
user) with a means to control the creation, the deployment,
or the modification of each device configuration in a scalable
and consistent manner.

Rather, network operators often configure devices without
regard to any of the business processes affected by imple-
mented configurations, which can lead to a disruption of
network services. Without any mechanism for tying business
processes and network management processes together, a
newly applied configuration to a device just becomes a mere
setting on a device. Consequently, the entire functionality of
the configured device is not performed with business con-
siderations prior to or after this configuration, which in turn,
isolates the network processes from an organization’s busi-
ness processes and hinders efficiency.

Additionally, internal and external distributed system
networks are becoming more sophisticated. There is a need
in current systems to process and account for a host of
unique system events and/or requests which may, for
example, require handling of unique access authorizations or
contextual data in order to properly process. The combined
increase in network users and in sophistication of networked
applications creates further need to integrate network man-
agement and business processes by establishing business
rules that govern the usage of shared network resources.

To normalize the structure and functionality of each
network resource requires at least abstracting the resource’s
functionality. But abstracting resource functionality presents
a problem for most networks because they are built using
distinct devices, each of which have many different capa-
bilities and command syntaxes. Further, different vendors
use different programming models for their vendor-specific
network devices. The use of different programming models
often leads to an inoperable or suboptimal networking of
resources. For example, the use of varied programming
models tends to impair a network operator’s ability to
determine whether a certain traffic conditioning used to
separate different classes of traffic is correct.

FIG. 1 is a diagram showing network resources as sources
of network information, each of which is associated with a
different programming model. For example, a network por-
tion 100 includes a first router manufactured by vendor one
having a set of vendor-specific command line interface
(“CLI”) commands 102, a second router built by vendor two
having another set of vendor-specific CLI commands 104,
and one or more repositories of one or more Policy Infor-
mation Bases (“PIBs”) and/or Management Information
Bases (“MIBs™) 106. If FIG. 1 represents a portion of a
conventional network, some routers support CLI 102 and
104 for provisioning while other routers employ Simple
Network Management Protocol (“SNMP”) for monitoring,
which includes information from MIBs and PIBs 106.

Without an underlying uniform data representation 110
that relates the CLI commands to SNMP commands, it is in
general impossible to correlate the commands of one pro-
gramming model to the commands of another programming
model. Since many network vendors build separate appli-
cations for managing different sets of features present in the
same vendor-specific device, a number of multiple applica-
tions are required to manage and to provision devices from
not only different devices from different vendors, but also
from the same vendor as well.

US 9,460,417 B2

3

Moreover, present devices are difficult to extend to
accommodate new technologies, device versions, vendor-
specific information, and other factors. Prior U.S. Pat. No.
8,010,650, having common inventorship hereto, and which
is herein incorporated by reference, describes in detail the
process of providing a system and a method for managing
networks including one or more different devices having
different command syntaxes, different programming models,
and/or different functionalities. Systems and methods as
disclosed therein are capable of providing an information
source that allows management of different devices within a
network system, but are generally difficult to extend to
management of devices, events, and triggers of diverse
distributed systems. For example, the disclosed networking
systems are capable of recognizing and configuring a set of
new devices as they connect to the network but are not
sufficient to process a wide variety of system events and
triggers outside of this context. Thus, such systems and
methods may be used to implement certain features, namely
the provision of an information model, in accordance with
disclosed embodiments, but further capabilities and exten-
sion are required to dynamically respond to and handle
system events at runtime as disclosed herein.

Although present devices and techniques for managing
networks are functional, they are not sufficiently accurate or
otherwise satisfactory. Moreover, devices and techniques are
incapable of adequately recognizing and handling system
events in order to provide administration of network func-
tions and configuration in a dynamic runtime environment.
Accordingly, a system and method are needed to address the
shortfalls of present technology and to provide other new
and innovative features.

SUMMARY OF THE INVENTION

Exemplary embodiments are shown in the drawings and
are summarized below. These and other embodiments are
more fully described in the Detailed Description section. It
is to be understood, however, that there is no intention to
limit the scope of the claims to the embodiments. One
skilled in the art can recognize that there are numerous
modifications, equivalents, and alternative constructions that
fall within the spirit and scope the claims.

In one aspect, a method for specifying the features and
behavior of a set system resources includes providing a
management device having a processor and a memory. An
information model is provided. The model includes a first set
of model elements representing the features and behavior of
a set of system resources. The management device derives a
mapped data model from the information model, the mapped
data model comprising a mapping of one or more elements
of the first set of model elements into a second set of model
elements of the mapped data model. The mapped data model
is stored in a first repository. The management device
derives one or more data objects from the mapped data
model that are associated with a behavior of a system
resource. The management device stores the data objects in
a repository. The management device then causes one or
more processes to be executed that effect a change in the
system resource as specified by the one or more data objects.

In a second aspect, a method of configuring a manageable
entity includes providing an information model stored in a
first repository. The information model defines a set of
relationships. A management device is provided having a
processor and a memory. The management device is in
communication with said first repository and is configured to
respond to a system event. A second repository is provided

10

20

25

30

35

40

45

50

55

60

65

4

for storing a plurality of code sections for deriving a set of
data models from the information model. Each data model
in the set of data models comprises a subset of the set of
object relationships defined by information model. The
managing device is further configured to respond to the
system event by recognizing the system event, processing
the system event to determine one or more requested con-
figurations for a manageable entity; retrieving a plurality of
code sections from the one or more data models for man-
aging a requested configuration of said manageable entity;
constructing one or more objects that represent the requested
configuration for the manageable entity; and executing one
or more processes that implement the requested configura-
tions specified by the one or more objects.

In yet another aspect, a configurable network for speci-
fying the features and behavior of a set of network resources
includes at least one processor coupled to a memory. The
memory stores an object-oriented information model. At
least one transformation process that can convert all or part
of the information model into all or part of at least one data
model is provided. The processor modifies instance data of
all or part of at least one object created in the object oriented
data model based on received network events; invokes a
mapping function to interpret the modified instance data, by
mapping the modified instance data to one or more pre-
defined control points in the codes of the one or more data
models according to a policy rule; and executes the codes of
the one or more data models to output network functions to
configure a network resource according to the modified
instance data. Preferably, the system need not change any of
the underlying code of the more data models changes during
the configuration.

Accordingly, various embodiments are provided that
define a combination of an information model, a set of one
or more data models, a set of patterns, a set of rules of
different types, a set of control points, a set of mappings
between rules and control points, a set of policy rules, and/or
a set of metadata that dynamically define, create, manage,
and remove behavior at runtime without changing code

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects and advantages and a more complete
understanding of the present invention are apparent and
more readily appreciated by reference to the following
Detailed Description and to the appended claims when taken
in conjunction with the accompanying Drawings wherein:

FIG. 1 is an exemplary block diagram showing network
resources as sources of network information.

FIG. 2 is an exemplary block diagram illustrating one
embodiment of an exemplary network system.

FIG. 3 is an exemplary block diagram of a system being
managed in accordance with certain embodiments.

FIG. 4 is an exemplary block diagram of a management
device in accordance with certain embodiments.

FIG. 5 is an exemplary flow diagram of operations
occurring between the management device and one or more
entities in the managed system, illustrating the use of events
and triggers in accordance with certain embodiments.

FIG. 6a is a simplified class diagram illustrating the top
classes of the DEN-ng information model and the attach-
ment of metadata to object instances according to the
DEN-ng model.

FIG. 65 is a simplified class diagram showing additional
subclasses of the Entity class in the DEN-ng model.

US 9,460,417 B2

5

FIG. 7 is an exemplary flow diagram of operations
directed by the management device for parsing a query or
trigger, in accordance with certain embodiments.

FIG. 8 is a class diagram of an exemplary definition of a
set of classes for specifying, defining, and applying use of
policy rules to control state transitions in accordance certain
embodiments.

FIG. 9 is an exemplary flow diagram of operations
directed by the management device responding to unknown,
missing, incorrect, or ambiguous terms encountered in the
query or trigger by using knowledge from the information
model to resolve inconsistencies in accordance with certain
embodiments.

FIG. 10qa is an exemplary flow diagram of operations
directed by the management device to initialize the man-
agement system to be able to respond to an event and/or
triggers in accordance with certain embodiments.

FIG. 104 is an exemplary flow diagram of operations
directed by the management device in responding to an
event and/or trigger in accordance with certain embodi-
ments.

FIG. 11 is an exemplary flow diagram of operations
directed by the management device for specifying and
managing the features and/or behavior of a set of managed
entities in response to an event and/or trigger, in accordance
with certain embodiments.

FIG. 12 is an exemplary flow diagram of operations
directed by the management device for translating a request
from a system or network entity to operate on a set of
managed entities in accordance with certain embodiments.

FIG. 13 is a set of diagrams illustrating how object
stitching may be used to for changing the configuration of
the features and/or behavior of a set of managed entities by
using object stitching in accordance with certain embodi-
ments.

FIG. 14 is an exemplary flow diagram of operations
directed by the management device for verifying that the
configuration changes performed operate as expected in
accordance with certain embodiments.

FIG. 15 is a high level block diagram illustrating a more
detailed view of a computing system useful for implement-
ing the management device in accordance with certain
embodiments.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention provides a system and a method for
using dynamic object modeling and business and/or policy
rules to dynamically specify and modify system behavior at
various levels of abstraction, including business, system,
and device implementation. More specifically, the present
invention provides a system and method for specitying,
instantiating, managing, and removing sets of temporary or
permanent additions and/or modifications to the attributes or
behavior of a set of objects, relationships, scripts, and/or
applications of a device, module, subsystem, or system,
without having to change the underlying code of these
objects, relationships, scripts, and/or applications. An
advantage of the disclosed system is that the means by which
the additions and/or modifications to the attributes and/or
behavior are implemented is defined using a dynamic object-
oriented information model. It is further realized using a set
of mappings to a set of dynamic object-oriented data models.
Specifically, the system enables attributes, methods and/or
relationships (e.g., associations, aggregations, and/or com-
positions), as well as constraints on any of these elements,

10

15

20

25

30

35

40

45

50

55

60

65

6

to be dynamically added or changed at runtime without
changing any underlying code of the components being
managed by instantiating and manipulating object instances
in accordance with certain policy rules.

The way by which the additions or modifications to the
attributes and/or behavior mentioned above is executed is
defined using a dynamic object-oriented information model.
It is further realized using a set of mappings to a set of
dynamic object-oriented data models. In certain embodi-
ments, the means is further enhanced by using a set of policy
rules that interact with the dynamic object-oriented infor-
mation model, and hence, the set of dynamic object-oriented
data models produced from the dynamic object-oriented
information model, using pre-defined control points. The set
of policy rules enable additional behavior to be performed
before and/or after an object is instantiated and invoked via
the pre-defined control points. In these embodiments, means
may be further enhanced by using object wrapping, also
referred herein as object stitching, to map sets of the
dynamic object-oriented data models onto object instances
via association and/or aggregations and/or compositions in
order to further add behavior and/or modify system con-
figurations at runtime without the need to change any
underlying code. In such enhancements, use of policy rules
and metadata may control which objects are stitched
together, as well as how and when the stitching is done.

An exemplary system and method enables different sys-
tem elements to share and exchange data for provisioning
and managing those system elements and/or their configu-
ration. Among other things, the embodiments facilitate the
sharing and exchanging of data by using a normalized
representation of system resources—including objects, sys-
tem operating parameters, devices, architecture, hardware,
or other system elements—to, for example, map object-
oriented data models onto object instances associated with a
system resource in order to add and/or change system
elements, parameters, or configurations at runtime. The
mapping feature utilized by the various embodiments may
be applied equally among roles representing people, orga-
nizations, devices, services, metadata, or other system
objects (e.g., network devices, servers, protocols, user
requests, and events). For example, in the context of a
network system, the embodiments may facilitate the map-
ping of hardware and/or software features associated with a
system resource to other hardware and/or software features
of other, distinct system resources. The normalized repre-
sentations further allows similar functions in different sys-
tem resources to be equated regardless of having dissimilar
hardware and/or software features, such as dissimilar com-
mand structures and implementations. The mappings of
distinct resource features further facilitate dynamically
responding to system events triggered by heterogeneous
resources, as well as to contextual data in requests initiated
by the distinct resources. In such contexts, system resources
generally include any network device, application, person,
role, or any other element associated with a particular
network and/or system.

According to at least one embodiment, an information
model is provided for representing different system events,
triggers, and/or devices, including different programming
models, attributes, methods, relationships, and/or different
device functionalities, as a common representation or
abstraction. In particular, in one embodiment, various sys-
tem triggers and/or events may similarly be normalized for
representing and optimizing the system configuration. By
representing aspects of the system configuration in a nor-
malized model, the system can dynamically respond to

US 9,460,417 B2

7

unique system triggers and/or events by mapping sets of
dynamic object-oriented data models onto object instances
via association, aggregations, and/or compositions (i.e.
object-wrapping) in order to add and/or change system
configurations at runtime without the need to change any
underlying code.

In another embodiment, various user or device requests
may be normalized and represented in a uniform model that
allows a system to dynamically respond to the user or device
request, for example, by reading metadata embedded within
the request, and adjusting the system elements and/or con-
figuration in accordance with data stored within the infor-
mation model.

In another embodiment different hardware features of a
network device may be normalized for representing the
physical, hardware, or software composition of dissimilar
devices in a common way, such as by a data model, which
enables mapping of equivalent physical, hardware, or soft-
ware capabilities of different devices. Further, by represent-
ing one or more physical, hardware, or software character-
istics of a device as, for example, an extensible
representation of the physical characteristics (e.g., repre-
sented in XML), the associated logical functions of that
device can also be related to logical functions of other
different devices.

One skilled in the art would recognize that such function-
ality between the embodiments is not mutually exclusive
and/or jointly exhaustive. The normalized representations
contained in various embodiments of the current invention
may be further extended in accordance with the present
invention to account for a host of system events and/or
triggers. Moreover, the type of object (or set of objects)
whose behavior can be dynamically changed at runtime is
limited only by the inherent ability of the management
device to store and define behavior relating to parameter(s)
of the affected object and/or device, a set of objects and/or
devices, relationships between objects and/or devices, con-
straints on any of the preceding behaviors, interactions
between a set of objects and/or devices, and the rest of the
system. For example, the instant invention may be applied
equally to roles representing people, organizations, devices,
or other objects as well as to resources (e.g., devices,
servers, protocols, and events), services, policy rules, and
metadata. As used in the preferred embodiment, policy rules
may guide a system’s response to events or triggers in
variety of forms and account for a host of states to which the
system may dynamically respond in order to optimize sys-
tem configuration and/or event processing.

As described herein, an “information model” can refer to
entities in a managed environment (“managed entities”), the
majority of which may be related to each other (e.g., they
may constitute a network), the interrelationships, features,
and behaviors of such managed entities, and/or how data
flows within the network in a manner that is independent of
how the data is stored and retrieved in a repository. An
information model therefore can include abstractions and
can represent the various entities in a managed environment,
as well as parameters of system operations or constraints.
Further, the information model can be used as a “dictionary”
that defines different characteristics of managed entities and
how those characteristics relate to each other. For example,
an information model can be used to specify a data structure
for organizing physical and logical information for describ-
ing the physical and logical characteristics of managed
entities. This data structure can also be used to describe how
other managed entities use system parameters and are
related to specific physical and logical managed assets. By

25

40

45

55

8

using an exemplary information model in the manner of the
present invention, different networking products and appli-
cations can share and reuse information with which man-
aged entities relate.

A preferred embodiment of this invention uses a single
information model, which serves as a single master diction-
ary of information. However, it is contemplated that various
embodiments could use multiple information models. Such
embodiments may maintain integrity by providing a man-
agement device that takes all knowledge from each infor-
mation model into account in order to derive any necessary
mapping that is required from an information model to a data
model and vice-versa.

A “data model” can refer to any concrete representation of
the information model that defines how data is stored,
manipulated and/or retrieved using a specific type of reposi-
tory and access protocol. A data model, which can include
data structures, operations, rules, and the like, is analogous
to the implementation of the data defined in an information
model, but using a specific platform and a particular reposi-
tory. The platform and repository may further put specific
constraints on languages and protocols that can be used. If
such constraints are made, then a data model may also take
such constraints into account

“Mapping,” as described herein can refer to model map-
ping, which is a translation from one type of model (e.g.,
information model) to another type of model (e.g. data
model). Model mapping changes the representation and/or
level of abstraction used in one model to another represen-
tation and/or level of abstraction in another model. Model
mapping can refer to a mapping from an information model
to a data model. This type of mapping is usually exemplified
through the mapping to a standards-based data model (i.e.,
a data model whose constructs are based on data structures
and protocol elements defined in a standard). Model map-
ping can also refer to a mapping between different data
models. This type of mapping is typified by optimizing a
standards-based data model in order to take advantage of the
features of a particular vendor implementation that utilizes
the standards-based feature (e.g., a language or encoding).

An “object” as used herein may refer to an instance of a
class, a set of instances of a set a classes, an instance of a
relationship joining two classes, or generally as any acyclic
subgraph of an information model. Each object may repre-
sent one or more functionalities of a manageable entity, the
manageable entity (e.g., device, service protocol, system
operating parameter etc.) itself, a person or organization, a
behavior (e.g., policy rule, state machine, script, section of
code), or a role that any of the above play within the system.

An “event” or “trigger” as used herein may refer to any
occurrence or circumstance, whether active or passive, that
is capable of being recognized by the system and to which
the system may respond. An event or trigger may, for
example, occur as the result of a “user request” or “device
request” to access data within the system or network.
Additionally, an event may be triggered automatically by a
set of one or more conditions which may be satisfied and
result in the system being provided with contextual data
concerning the event. One skilled in the art should recognize
that there are a variety of circumstances that may give rise
to a need or desire to reconfigure an aspect of the system or
network when responding to a chain of events.

“Object wrapping” as used herein refers generally to
process of mapping one or more objects into a single larger
object that has the functionality of its constituent compo-
nents. The larger object, i.e. the stitched or wrapped object,
contains a set of member variables that define each of the

US 9,460,417 B2

9

“stitched” or “wrapped” objects. Object wrapping, in accor-
dance with the various embodiments, is typically directed
dynamically at runtime through the execution of one or more
policy rules and, in some embodiments, metadata. By imple-
menting a system in accordance with the methods disclosed
herein, the system may use information retrieved from an
information model to access data elements stored in one or
more data models via one or more control points. The
objects represented by these data elements may be mapped
to object instances, wherein one or more data elements
and/or objects may “wrap” other objects by using those
additional objects as member variables within the wrapped
object instance. By allowing objects to wrap other object
instances, behavior of a system, or its managed entities
and/or assets, can be dynamically modified in a variety of
ways, including at least: 1) objects can dynamically wrap
other object instances; 2) individual attributes can be added
to an object to support and/or modify device and/or system
functionality; 3) individual functions can be added to an
object to support and/or modify device or system function-
ality; 4) a wrapped object’s functionality can be executed
before it is called; and/or 5) a wrapped object’s functionality
can be executed after is called. The individual functions may
additionally be called multiple times, such as calling a
function for error checking both before and after the object’s
functionality has been modified.

The information and data models disclosed herein contain
information showing how the instance objects may be used
to account for system behavior and/or device behavior. As
explained in greater detail below, object wrapping allows for
creation of instance objects but does not require any of the
underlying code of either the system or the targeted object
to be changed or modified. Rather, object instances are being
manipulated and/or aggregated to achieve functional capa-
bilities and/or account for physical capabilities of a managed
entity. Since patterns are being used within information or
data models, different rules and rule types can be abstracted
and used as templates to solve related problems. Thus, object
wrapping allows the model to treat entities, relationships,
constraints, and other elements as reusable objects, thereby
providing extendibility and scalability in an unprecedented
manner.

A “managed entity” can refer to any physical or logical
entity that can be managed by a network operator or appli-
cation, but need not represent only managed network
devices. For example, a managed entity can also refer to
routers, switches, busses, logical device interfaces, physical
ports, users, roles (e.g., as customer), applications, system
configuration settings, policies, statistics, system operating
parameters, or to other entities that either directly or indi-
rectly affects operation of a system or a system device.

A “policy rule,” as used herein, is an intelligent container:
it contains data that define how the underlying policy is used
in a managed environment, as well as a specification of
behavior that dictates how the managed entities that it
applies to will interact. The contained data may be of four
types: (1) data and metadata that define the semantics and
behavior of the policy rule and the behavior that it imposes
on the rest of the system, (2) a set of events that can be used
to trigger the evaluation of the condition clause of a policy
rule, (3) an aggregated set of policy conditions, and (4) an
aggregated set of policy actions.

In at least one embodiment, a policy rule can be defined
at various levels of abstraction. Three such levels are typi-
cally employed, but may optionally be varied. These three
types of policy rules are business, system, and implemen-
tation. A business policy rule may be defined as one in which

35

40

45

50

55

60

65

10

business-related concepts are defined, manipulated, and
governed. Non-limiting examples of business rules include:
maximizing revenue (potentially at the cost of not providing
system resources to certain customers or user types to in
order maximize customer or use of a particular type);
ensuring that the terms of service in a Service Legal Agree-
ment are not violated; and ensuring that certain types of
users must have a particular set of credentials to utilize a
system resource. A system policy rule may be defined as one
in which architectural or other system-level constraints are
defined, manipulated, and governed. Non-limiting examples
include: a system that must satisfy high availability con-
straints, and hence must provide the ability to meet the needs
of'users and/or consumers of said system during a particular
measurement interval; or that a Representational State
Transfer Applications Programming Interface must be made
available for all interfaces that interact with a customer. An
implementation policy rule may be defined as one in which
the features and/or behavior of a managed entity are spe-
cifically governed. Non-limiting examples include: defining
a condition when the parameters of a given algorithm should
be changed (and optionally, by what degree); and choosing
a particular measurement method of a given metric or set of
metrics over an alternate measurement method and set of
metrics.

In general, but without limitation, business policy rules
may apply to the users, devices, or services of organizations;
system policy rules may apply to components, modules,
devices, and systems; implementation policy rules may
apply to specific data, features and/or behavior of an entity
that is directly or indirectly managed. Certain embodiments
of the present invention use the DEN-ng information model.
A unique feature of this information model is that it can
define the aforementioned abstractions and other abstrac-
tions of policy rules in the same model. By defining policy
rules in a single model, certain embodiments significantly
simplify the job of the developer to make use of different
types of policy rules. In particular, these embodiments
enable business functions to determine which networked
resources and services should be offered at a particular time.

Further to the present invention, some embodiments pro-
vide an exemplary information model that allows business
rules to be translated into a form that can be used to define
network services, such as device configuration commands
and/or network resource allocations, with or without the use
of an intervening system policy rule. Business rules can refer
to one or more settings and/or constraints using, configuring,
monitoring and/or managing network configurations, ser-
vices delivered, and/or resource allocations, such as by the
type of user, the time of day a service is requested, the users
authorized to implement a network configuration, etc.

An exemplary information model can also be used with a
set of policy rules, of the same or different levels of
abstraction, to be integrated with the representations of the
business rules and the other managed entities according to
the present invention. The policy rules may be defined, and
represented, at a different level of abstraction than the
business rules and managed entities (e.g., network com-
mands). This supports the notion of a “policy continuum,”
which is a linked transition from one form of a policy rule
at a higher level of abstraction (e.g., a business policy rule)
to one or more forms of a policy rule, where each subsequent
form is at a successively lower level of abstraction. Hence,
a business policy rule that is related to at least one system
policy rule, which is in turn related to at least one imple-
mentation policy rule, form a policy continuum. This allows
policies to be built to proactively monitor system or network

US 9,460,417 B2

11

services and adjust, for example, the corresponding configu-
rations of a system and/or of any managed entities to ensure
that the business processes of a particular service is met by
the devices providing those services. The term “service”
refers generally to a functionality of a system or network that
can be provisioned for a customer, such as a VPN service.

An exemplary information model uses common represen-
tations of various managed entities to normalize physical
and logical devices, components of a device, communica-
tions, features, behavior, management operations, and
abstractions of a network or system to translate these tech-
nology-independent artifacts into at least one vendor-inde-
pendent data models (i.e., independent of implementation
technology). The information model is used to define how
different characteristics of the managed entities should be
mapped as well as what form it should take in the vendor-
independent data models. The information model may also
guide, through the use of metadata and annotations, how
technology-independent artifacts are mapped to current pro-
gramming models. These two steps enable an information
model to mediate between different devices and systems that
represent data and commands differently, and provide a
flexible and efficient implementation through the use of data
models to optimize the use of at least one protocol of the at
least memory comprising the management device.

An advantage of the various embodiments of the present
invention is that behavior of a managed object can be
changed dynamically, at runtime, without changing the code
or its associated data present in memory or a repository
regardless of whether the domain is network management,
storage management, server management, or cloud manage-
ment, or any distributed system similar thereto. The various
embodiments presented enable the creation, reading, and/or
modification of attributes and/or behavior of an existing
network service or resource, features of an existing device,
or adding support for entirely new network service,
resource, and/or device, all without the need to change any
underlying code.

Another advantage of the various embodiments is that
they allow an information model to be extended to use a
multiplicity of policy rules and languages. By decoupling
the policy rule implementation from the control points of the
various data models, various embodiments allow versatility,
scalability and adaptability in an unprecedented manner. To
these ends, the various embodiment disclosed herein provide
a method and system for using policy rules to dynamically
orchestrate system and device behavior before and/or after
objects have been invoked via the control points.

Another advantage of the various embodiments is that
methods are provided that allow objects to wrap each other
and be used to dynamically specify, instantiate, manage, and
remove sets of temporary or permanent additions and/or
modifications to the attributes and/or behavior of a set of
objects, relationships, scripts, and/or applications of a mod-
ule, subsystem, or system, without having to change the
code or the associated data stored in memory of these
objects, relationships, scripts, and/or applications. The vari-
ous embodiments provided allow instantiation of objects
that are manipulated dynamically at runtime and may be
stitched, or wrapped, together into reusable objects, patterns,
entities (e.g., a group of objects and model elements),
relationships, and/or constraints.

Another advantage of the various embodiments is that the
means by which the additions and/or modifications to the
attributes or behavior mentioned above is executed is
defined using a dynamic object-oriented information model;
it is realized using a set of mappings to a set of dynamic

20

25

30

40

45

55

12

object-oriented data models. Specifically, these embodi-
ments enable attributes, methods and/or relationships (e.g.,
associations, aggregations, and/or compositions), as well as
constraints on any of these elements, to be dynamically
added or changed at runtime without changing any code, or
the associated data of said entities, by manipulating object
instances. The means of these embodiments may be further
enhanced by using a set of policy rules that interact with the
dynamic object-oriented information model, and hence, the
set of dynamic object-oriented data models produced from
the dynamic object-oriented information model, using pre-
defined control points. The set of policy rules enable addi-
tional behavior to be performed before or after an object is
invoked via the aforementioned control points.

Referring now to the figures, according to one embodi-
ment, FIG. 2 depicts a block diagram illustrating one
embodiment of an exemplary network system 200. Alterna-
tively, in other embodiments, network system 200 may be
another form of management systems, such as storage
management, server management, cloud centers, data cen-
ters, or the like, including any combination thereof. How-
ever, network management in particular requires a high
degree of flexibility and often must be extended to accom-
modate new features for existing devices as well as new
devices that may be released. In addition, networks serve as
the foundation of a distributed system, and hence are used in
all of the above forms of management systems. Thus, in one
embodiment, the network system 200 may provide a plat-
form for the identification or recognition of system events
and/or system triggers in order to dynamically respond to
those events and/or triggers at runtime without the need to
change any underlying code, or associated data for the
entities being governed, for managing and operating the
network system 200 or any of its managed entities and/or
managed assets. For example, network system 200 may use
an information model as described above to operate in a
contextual manner. In the preferred embodiment, the net-
work system 200 uses a Directory Enabled Networks—next
generation (“DEN-ng”) inspired information model, as
described in further detail below.

In exemplary network system 200, one or more databases
202, , may store abstractions that may represent the various
managed entities and/or assets in a managed environment,
such as an information model and one or more data models.
In this context, the term “database” should not be construed
to imply a relational database; rather, it is used as a generic
term to represent any appropriate repository, including, but
not limited to, relational databases, object-oriented data-
bases, not only Structured Query Language (NoSQL) data-
bases, new SQL (NewSQL) databases, directories,
in-memory storage systems, Indexed Sequential Access
Method (ISAM) files, flat files, and the like. The information
model may be stored in the repository of one database, and
various data models and policy rules may be stored in the
various repositories of either the same or one or more other
databases 202, ,. The information model stored in the
database 202 may define information representing various
device and/or system configurations, such as patterns, sets of
policy or business rules of different types, data model
control points, mappings between policy or business rules
and the control points, and/or sets of metadata, all of which
may be used to dynamically define, create, manage, and
remove behavior of the network or system at runtime
without changing any underlying code. Such rules, patterns,
and metadata, as described in greater detail below, may store
and provide information about system access authorizations,
dataflow priorities, applicable business rules or other types

US 9,460,417 B2

13

of policy rules, device configuration, system operation
parameters or configuration, etc.

Additionally, within the network system 200, a managing
entity 204 is provided to recognize and dynamically respond
to the system events, triggers, and/or requests. The manag-
ing entity 204 may comprise a processor and a memory. In
addition, data used by the managing entity 204, and well as
data required to instantiate a new instance of the managing
entity 204, may optionally be stored in one or more data-
bases 202, ,. The managing entity 204 is configured to
access a plurality of program instructions and data stored
within the information and/or data models, and is further
configured to cause the processor to receive and process data
in accordance with system events. The managing entity 204
is further configured to execute one or more processes that
invokes different types of policy rules, as well as business
goals, to access sets of patterns, rules, objects, and control
points, in order to form a set of mappings between rules and
control points that dynamically define, create, manage, and
remove system or device behavior at runtime without chang-
ing underlying code or its associated data that is stored in at
least one repository.

The exemplary network system 200 may also include one
or more users 212, ,, that may utilize one or more user
devices 214. The user devices 214 may be coupled with the
network. Herein, the phrase “coupled with” is defined to
mean directly connected to or indirectly connected through
one or more intermediate components, either by hardwired
connection or by wireless connection. Such intermediate
components may include both hardware and software based
components. Variations in the arrangement and type of the
components may be made without departing from the spirit
or scope of the claims as set forth herein. Additional,
different or fewer components may also be provided.

The user device 214 may be a computing device that
allows a user to connect to a network 200, such as the
Internet and/or an intranet, or any other network that uses
Internet Protocol technology to share information, opera-
tional systems, or computing services within an organiza-
tion. Examples of a user device include, but are not limited
to, a personal computer, a tablet or mobile computer, per-
sonal digital assistant (“PDA”), cellular phone, or other
electronic device capable of being coupled with network
200. The user device 214 may include any operative periph-
eral devices that allow a user to interact with other devices
or hardware over network 200 via the user device 214. The
user device 214 may be configured to access other data/
information in addition to web pages over the network 200
using a web browser, such as INTERNET EXPLORER®
(sold by Microsoft Corp., Redmond, Wash.) or FIREFOX®
(provided by Mozilla). Although not shown, there may be
multiple user devices connected through the network system
200 with the system devices and/or other user devices. Each
of the other user devices may include a plurality of users
212, _,, that access that user device.

The network system 200 may also include one or more
devices or system resources, or “managed entities,” that are
currently connected to or making use of system resources, or
that may wish to connect to the network system 200. As
depicted in FIG. 2, exemplary managed entities may repre-
sent users, user devices, routers, hubs, modems, switches,
the system resources being used by the respective devices,
etc., or the like. Each managed entity is capable of being
represented by one or more data models stored in the one or
more databases 202, ,,. For example, a router can be repre-
sented by a set of data models that represent physical and
logical device information that describes the particular man-

10

15

20

25

30

35

40

45

50

55

60

65

14

aged entities. In general, each data model can represent all
or some information that describes a particular managed
entity. For example, a router can be associated with physical
information (e.g., the set of line cards that are installed in the
router) as well as logical information (e.g., protocols that are
running on each of its interfaces). Other exemplary logical
information can include protocol information, service infor-
mation (e.g., connectivity using a VPN), statistical informa-
tion (e.g., data describing how well a service is running),
ownership information (e.g., who owns the device, who is
responsible for changing the device), security information
(e.g. user access to authorization), and other like informa-
tion.

Thus, the information model uses common representa-
tions of various managed entities—such as user devices 214,
vendor data model hub 216, vendor data model router 218,
vendor data model modem 220, and/or vendor data model
switch 222—to normalize physical and logical entities of a
network by performing mapping translations from current
programming models to vendor-independent data models
(i.e., independent of implementation technology). The infor-
mation model is used to define how different characteristics
of the managed entities should be mapped as well as what
form it should take in the vendor-independent data models.
The information model further defines a set of relations to
one or more policy rules which may guide the system
operation and/or response to systems events and triggers.

To perform mapping translations in accordance with an
embodiment, there are either “n” sets of mappings from the
information model to a vendor-independent data model, or a
method by which a mapping from the information model to
a vendor-independent data model can be computed dynami-
cally at runtime, stored in one or more repositories—such as
databases 202, _, or memories located on user devices 214,
vendor data model hub 216, vendor data model router 218,
vendor data model modem 220, and/or vendor data model
switch 222—in a form appropriate to each of the reposito-
ries. The “n” sets of mappings are the number of relevant
data models, where each mapping to a unique repository is
due to at least different access protocols, storage structures,
and/or other characteristics that differentiate its implemen-
tation. In at least one embodiment, one repository is a
directory and another repository is a relational database, or
any other known database.

Optionally, there may be additional “m” sets of mappings,
each of which results in a mapping of a data model (e.g.,
stored in a repository) to a vendor-specific (i.e., optimized)
implementation, such as one or more different “m” number
implementation for each vendor-specific product. Each of
the “m” sets of mappings is used because different vendors
and physical entities implement the same or similar features
(e.g., software, commands, etc.) differently as well as the
functions performed thereby. As such, a single mapping can
exist from an information model to a data model stored in a
specialized form for a given type of repository or system
device or managed entity. But many mappings may exist to
map from the specialized form of the data model to imple-
ment different vendor’s commercial products of the reposi-
tory or managed entity.

Further describing an embodiment of the present inven-
tion, different software features (e.g., traffic conditioning,
link aggregation, etc.) that are implemented using different
functions (e.g., different queuing algorithms, different com-
mands, etc.) can also be normalized for representing logical
characteristics in a common way, such as by using a single
model. Such a common representation enables mapping of
the same or equivalent functionality supported by two

US 9,460,417 B2

15

managed entities even though the mechanisms by which that
functionality is supported are different. By representing
logical characteristics in a common way, those different
managed entities requiring a combination of commands to
effectuate functionality in a manner similar to other man-
aged entities are mapped those managed entities thereby
requiring as little as a single command for performing a
similar functionality. With a common representation, it
becomes possible to coordinate the different commands of
different managed entities to provide a common service.

According to an embodiment, different software features
can be mapped onto different hardware to enable a network
operator to design a network architecture that is independent
of any one vendor’s hardware and/or software implementa-
tion. Consequently, one or more hardware and/or software
features, as “managed entities” of network devices, can be
enabled or disabled through software regardless of whether
an administrative model is different than a corresponding
programming model. Thus, the administrative capabilities of
a device can be abstracted into a common representation, so
that the functionality of different devices can be managed
and coordinated concurrently in accordance with business
processes as defined, for example, by business rules or other
types of policy rules.

Referring now to FIG. 3, an exemplary diagram of a
managed system 300 is shown. The managed system 300
includes a management system 310, a system being man-
aged 360, a set of one or more entities to be managed 370,
372, dedicated management interfaces 350 for communicat-
ing management data, requests, and commands 351, 352,
353, and 354, and various communication interfaces 356 and
380. The management system 310 includes a set of data
repositories 320, a management entity 330, management
logic 340, dedicated management interfaces 350, and
generic communications interfaces 356. The data reposito-
ries are shown in FIG. 3 in their most generic form, which
separates them by function. The information model 322, the
at least one data model 324, and the at least one object model
326 may each be separate repositories within one or more
databases that may be implemented using different plat-
forms, languages, and protocols. In the preferred embodi-
ment, use of separate repositories allows for maximal use of
the properties of different repositories, including matching
said properties to management operations. However, various
other embodiments may combine the various repositories
into one or more repositories, thereby reducing the total
number of repositories utilized.

In at least one embodiment, the dedicated management
interfaces 350 consist of at least one port to receive remote
management commands 351 and one port to send manage-
ment data 352. This enables communication with other
remote entities, which may be other management systems.
For example, an Operational Support System (OSS) may be
made up of one or more Element Management Systems
(EMSs) and one or more Network Management Systems
(NMSs), since not all EMSs or NMSs provide the same
functionality for managing different vendor devices. Simi-
larly, two additional dedicated management interfaces
enable the management system 310 to deliver commands to
the system being managed 360 via dedicated interface path
353 and receive data from the system being managed 360 via
dedicated interface path 354.

The system being managed 360 includes a set of dedi-
cated management interfaces (dedicated interface path 353
for receiving management commands from the management
system 310, and dedicated interface path 354 for sending
management data to the management system 310). The

10

15

20

25

30

35

40

45

50

55

60

65

16

system may also include optional management interfaces for
communicating with other entities (e.g., an EMS that is not
part of this managed system). It may also include a set of
generic communication interfaces 380, as well as a set of
entities to be managed 370, 372.

Referring now to FIG. 4, an exemplary diagram of a
management device 400 is shown. The management device
400 includes a processor 402 and memory 404. A manage-
ment device 400 may include one or more of an interpreter
or compiler 406. The interpreter or compiler 406 may
execute commands and programs, as well as appropriate
processing and management logic for governing manage-
able entities. Management device 400 may also include one
or more repositories 410 containing an information model
414, data model 416, and an optional function repository
418. Alternatively, one or more of the interpreter or compiler
406, processing and management logic 408, and repository
410 may be operatively coupled to the management device
400. Conceptually, the management device 400 may be
viewed as a processor and memory located within a single
machine, or work as part of a distributed system where some
or all of the various components may be accessed by the
system to achieve the same functionality as described
herein. In one embodiment, the management device 400 is
a system that implements the information model and reposi-
tory of objects, as well as communicates with managed
entities. Management device 400 is capable of responding to
system events or triggers in order to execute one or more
processes that dynamically define, create, manage, and
remove entity features or behavior at runtime without chang-
ing any underlying stored code.

In one embodiment, the management device 400 is
coupled to an information model 414, which may be stored
in one the system databases 202, _,,. The management device
400 may also access one or more data models. Each data
model 416 may also be stored in one of the system databases
202, ,,. In the preferred embodiment, the information model
and each data model may be stored in separate databases to
account for the use of a different platform, language, and/or
protocol, if necessary. Such separation provides increased
protection for the information model and maintains data
integrity. It is contemplated that multiple data models may
be used where a management system desires to make use of
specific features (e.g., query support, or referential and data
integrity, or the ability to process structured, unstructured,
and semistructured data). In which case, it may be prefer-
ential to allow for use of distinct types of repository struc-
tures.

Further, each type of data model 416 may include one or
more control points. The control points will typically be
inherited from the data contained in the information model
414, and represent concrete points of access allowing appli-
cations and system developers to interface with the data to
support system functionality. Accordingly, each control
point facilitates the injection of dynamic behavior into a set
of objects, relationships, scripts, and/or applications of a
module, subsystem, or system, without having to change the
code of those objects, relationships, scripts, and/or applica-
tions. Via access to the information model 414 and one or
more data models 416, the management device 400 encour-
ages reusable object instances, especially in the form of
patterns, to be built. Patterns increase the reliability and
efficiency of the system, since their corresponding imple-
mentation benefits from multiple, repeated use. In addition,
patterns enable the developer to more quickly understand a
complex system, since the same concept is repeatedly used.
Hence, the reliability and efficiency of the management

US 9,460,417 B2

17

system also benefits by the use of patterns. Thus, within a
network system, entities, classes, attributes, relationships,
and constraints are reusable and may be assembled into
reusable objects that can be applied dynamically to solve
different classes of problems. In this way, the present inven-
tion allows a system to leverage patterns (both new and
existing) to simply complex management tasks, including
monitoring and configuring network devices.

In another embodiment, the information model 414 also
facilitates application of policy rules to be used to control the
changes that may be required to be coordinated among
different data models. In order to change the data model
without changing any code, the system stores object
instances that are identified by the information model and/or
data models and mapped to the context of a particular device
or to a particular aspect of a system request. Accordingly,
one data model may identify a single object instance in a
way that is fundamentally different than other data models
Through mapping and use of policy rules, as further
described herein, the information model 414 may be used as
a mechanism to link together disparate data models. The
meaning and intent of a policy rule may be defined by the
information model 414, and the management device 400
may use this information map those policy rules to specific
data models 416 in order to add and specify functionality
appropriate to a particular application or use of the policy
rule at runtime.

The management device is generally configured to rec-
ognize event triggers in order to cause the execution of one
or more processes that may invoke various types of business,
system, or implementation policy rules. For example, each
type of policy rule may access sets of patterns, rules, objects,
and control points, in order to form a set of mappings
between rules and control points that allow the managing
device to dynamically define, create, manage, and remove
system or device behavior at runtime without changing code
or its associated data present in memory.

FIG. 5 is an operational flow diagram for recognizing and
processing an event trigger. At block 502, an event trigger
may occur within the system or network. As further
described herein, an event trigger may occur as a result of a
user request, device connecting to the network, or occur-
rence of some circumstance satisfying one or more condi-
tions defined by the system. An event may be an indication
of a significant occurrence of interest to the management
device 400. A trigger may be a type of event that is used to
indicate to the management system 400 that one or more
actions are desired of the management system.

At block 504, the management device 400 may recognize
the occurrence of event trigger and begin to process the
request or trigger at block 506. In at least one embodiment,
the management device 400 may process the request in
accordance with different types of policy rules that are
defined by the information model. For example, the man-
agement device 400 may use a parsing process as explained
in further detail in FIG. 7.

At block 508, the managing device may examine the
parsed output of the request or trigger. If the request or
trigger contains terms from the parsed output that the
management device does not understand, then the manage-
ment device may query the one or more data models 416 to
retrieve data, code sections, and/or object instances that are
required to understand and then implement portions of the
request, as further explained in connection with FIG. 9.

At block 510, the managing device 400 processes the
request using data retrieved from information model 414.
The data retrieved from the information model may include

10

15

20

25

30

35

40

45

50

55

60

65

18

code sections, objects, scripts, policy rules, and other data
and information required to implement all or portions of the
request, as further explained in connection with FIGS. 10a
and 105.

At block 512, the managing device gathers the opera-
tional, administrative, management, and/or performance
data retrieved from the set of managed entities that are being
governed in order to compare the data to the one or more
data elements stored in the one or more data models. At
block 514, the gathered data and the desired data are
compared to determine if they are deeply equal (i.e., objects
are not only of the same type, but their attributes, con-
straints, and relationships are also the same, which is indi-
cated by the “identical to” symbol, =), thereby ensuring that
the syntax and semantics of the two objects are the same. If
yes, then execution continues onto block 526. This process
applies recursively for each model element, such as may be
the case with arrays. At block 514, the deep equality
determination also checks for null equality.

If the determination at block 514 is no, then object
stitching may be required. The managing device 400 per-
forms object stitching at block 516, by stitching (i.e., “wrap-
ping”) the appropriate data elements and/or objects con-
tained in the one or more data models into a single stitched
object. This object wrapping may further be defined or
directed by the one or more types of policy rules that are
obtained from the information model, and thus, occurs
dynamically at runtime during the processing of the
response to the event or trigger. In complex requests, mul-
tiple objects may require stitching, as explained in further
detail in connection with FIG. 13.

At block 518, the management device may apply the
stitched object(s) to update the configuration of all affected
devices, potentially including additional devices that were
not originally part of the set of devices that were being
monitored. For example, if a monitored device interface
suddenly becomes congested, it may be necessary to exam-
ine other parts of the network to determine the cause of the
congestion. Furthermore, the solution to this problem may
involve changing the configuration of devices that were not
originally monitored. For simplicity, this and the following
blocks will be described as if each change that is to be
applied is separate and independent. In complex networks,
however, it may be preferable to categorize all configuration
changes and order them by dependency in order to enable
groups of changes that do not interact with each other to be
applied concurrently. In such embodiments, the configura-
tion to be applied by the stitched object(s) would likely be
tested to see if the proposed configuration changes will work
in the targeted environment and whether the requested
changes is safe to do at the current time.

At block 520, the management device checks to ensure
that the configuration update was correctly applied (e.g., by
checking if new or altered services and/or resources changed
by the stitched object(s) are operating as expected). If not,
then the management device logs the current context at
block 522 and initiates error processing at block 524. The
nature and type of error may determine whether operation
can be resumed, and at what block the process needs to
begin. If the configuration update was successfully applied
at block 520, then the management device may check to
ensure that all of the functionality and capabilities for
processing the request are accounted for at block 526. If yes,
the process completes. If this determination at block 526 is
no, then the process returns to block 512, where the man-
agement device executes one or more processes as may
further be defined by various types of policy rules, to

US 9,460,417 B2

19

examine the wrapped object and data retrieved from the set
of managed entities in order to determine which objects
and/or data elements are needed to account for the remaining
functionalities or capabilities and/or changes in behavior
that are required. The process continues this loop until all of
the requested functionality has been provided, as indicated
by a yes at block 526, at which point the process completes.

In accordance with the flowchart shown in FIG. 5, various
embodiments are able to use policy rules to define and
respond to triggers or events dynamically at runtime without
needing to modify or change code. The object stitching (also
referred to herein as “wrapping”), which typically occurs at
the data model level, allows one object to be used as a
member variable of a larger and more comprehensive,
stitched object. Moreover, the stitched object may be further
modified, extended, and reused according to the various
policy rules in order to account for new attributes or new
methods that are needed by future requests. For example,
once the stitched object is created, it may be saved into a
library or repository, just like any other object. This allows
the methods practiced in accordance with the current
embodiments to reuse stitched objects individually and to
create more complex objects (which may also be saved), as
well as create, define and use patterns to inject dynamic
behavior into a system without requiring the system at
runtime to be taken offline for maintenance or updating.
More importantly, if the managed system contains context-
aware components (e.g., components that produce different
resources and/or services based on different contexts), object
stitching may also be used to provide such resources and
services as the context changes.

The dynamic adjustment of attributes is further triggered
using a management device having context awareness of
events. However, in preferred embodiments, the manage-
ment of the dynamic behavior may also be governed and
controlled by the defined set of applicable policy rules.
Using policy rules to control and orchestrate the dynamic
behavior of the system provides immense scalability for
increasing number of system changes and specifying new or
different system behaviors. This scalability allows for rapid
prototyping of new devices wherein companies can easily
engage in with what-if analysis with the system to extend
additional functionality and capabilities to their devices. For
example, in the DEN-ng model, as further described herein,
the policy rules allow orchestration to define the behavior of
a set of managed entities from the point-of-view of other
managed entities. In this manner, the DEN-ng model allows
construction of a sub-model of behavior, which in turns
allows the policy rules to define and control the behavior of
the managed entity. This further facilities difficult network-
ing concepts, such as orchestration and choreography of
managed entities and their relationships, to be more easily
conceptualized and defined. Thus, the models and patterns
described herein provide inherent extensibility that can
accommodate new system requirements through the use of
context-aware policies without changing the system infra-
structure.

As a non-limiting example of a contextually aware system
using policy rules to dynamically respond to triggers or
events, a user device 214 may be connected to a company
intranet or network. The user device 214 may be a PDA,
cellular phone, or tablet computer, and the user device may
be in coupled communication with company network and
providing GPS or similar tracking information. The user of
the device may be operating the device from a secured
location, but may exit the secured location and enter into a
common, unsecured area. At this time, pre-conditions

10

15

20

25

30

35

40

45

50

55

60

65

20

regarding the device location will be satisfied and trigger an
event within the network. The management device or entity
may be configured to recognize and process this event in
accordance with various types of policy rules defined in the
information model. For example, the management device
may be able to take any number of actions, such as disabling
access to secured data resources, or rerouting the connection
through a firewall, or disabling any currently connected
VPN. Such actions can also be described as “service chain-
ing,” when referring to Software-Defined Networks. While
this concept illustrates a basic example of dynamically
responding to a single system event, one skilled in the art
will recognize that the nature of the system events and
underlying operation of the network may be extended using
the methods further described herein to dynamically respond
to a variety of distinct event types that may occur across a
network platform.

Additional embodiments further allow for the use of
metadata embedded in system triggers to drive the context-
aware policies and drive the dynamic modification of object
attributes and behaviors. As described below, the embodi-
ments may use policy rules to meet the needs of a particular
system’s use or application. However, the information mod-
els in such embodiments may further define multiple types
of metadata for each type of policy rule used. Further, in
certain embodiments, metadata may be used to drive the
dynamic changing of services and/or resources that are
offered as a function of context (e.g., time, date, amount of
congestion in a network path, percent of memory used, and
the like). A preferred embodiment uses the DEN-ng infor-
mation model as an information model that couples a rich
hierarchy of managed entities with a rich hierarchy of
metadata, as illustrated in FIGS. 6a and 65.

Referring now to FIG. 64, three of the four classes that
make up the top of the in DEN-ng information model are
illustrated, along with an aggregation (i.e., between the
Entity and the MetaData classes) and an association class
(i.e., EntityMetaDataDetail) to implement the aggregation.
RootEntity class 610 is the top of the DEN-ng class hierar-
chy. The attributes in RootEntity class 610 enable a man-
agement device to name, describe, and identitfy all objects of
interest in the environment. Entity class 640 is an abstract
class that extends the RootEntity class 610 in order to
represent classes of objects that are important to the envi-
ronment being managed. An instance of Entity class 640
represents objects that have a separate and distinct existence,
and is typically more than a collection of attributes or an
abstraction of behavior, which in DEN-ng are represented by
the Value class (another subclass of RootEntity, not shown
in FIG. 64a). The subclasses of Entity class 640 may play one
or more business functions, as well as represent character-
istics and/or behavior of the entities in the environment; the
immediate subclasses of the Entity class 620 are shown in
FIG. 6b. MetaData class 620 is an abstract class, and defines
information that describes, but may not directly contribute to
or impact, the state of the Entity or Value that the MetaData
is applied to. In DEN-ng, for example, classification theory
is used to ensure that Entities and Values preferably contain
only characteristics and behavior that are required to define
the Entity or Value; all other descriptive and informative
data are typically described in MetaData that are attached to
Entities and Values. EntityHasMetaData 650 is an aggrega-
tion that defines the specific types of MetaData 620 that are
associated with a particular Entity 640. This aggregation is
used to constrain and qualify the semantics of which Meta-
Data 620 are used to add meaning to which Entities. The
semantics of this aggregation are typically defined by the

US 9,460,417 B2

21

EntityMetaDataDetail 630 association class. EntityMeta-
DataDetail 630 is an abstract association class, and defines
the semantics of the EntityHasMetaData 650 aggregation.
This association class contains the attributes and relation-
ships that are common to specifying how Entities 640 and
MetaData 620 are associated with each other. Since there are
different types of Entities and different types of MetaData
that can be associated with each Entity, the EntityMetata-
DetaDetail 630 class is abstract, to enable the type-object
pattern to be used to build an appropriate set of concrete
subclasses to model the different semantics that could exist
between different Entities and different MetaData. The
DEN-ng Policy Pattern may be used to apply context-aware
policy rules to an association class. In this way, as context
changes, the actions executed by the policy rule can change
the attributes, attribute values, methods, and method execu-
tion according to application-specific needs.

FIG. 6b shows five subclasses of Entity 640 in the
DEN-ng model. Since the Entity 640 class defines the
EntityHasMetaData 650 aggregation, all of its subclasses
inherit this aggregation. This means that each subclass 621,
622, 623, 624, 625 shown in FIG. 6b also inherits this
aggregation. Hence, any Entity subclass can have metadata
attached to it.

In embodiments employing the above described method-
ology, the request or event trigger may likewise include
metadata embedded therein which may then be used to
further drive the contextually-aware policy rules. For
example, as shown in FIG. 65, Event 625 is a subclass of
Entity 640, and hence inherits the EntityHasMetaData 650
aggregation, thereby allowing the system to read and
dynamically respond to the metadata contained in the event
or trigger. In this case, the management device may process
metadata included within the request in accordance with the
flowchart from FIG. 5 in order to take any action in accord
with the applicable rules driven by the metadata. For
example, in the previous example of a user device being
operated within a company intranet or network, the user
device may be the device operated by the president of the
company’s, or the lead engineer. The user device may
therefore have additional access authorizations allowing it to
access security levels or secured data which may be
restricted in tiers of access, for example. Alternatively, the
user device may also have usage priority authorizations
embedded in metadata which allows the managing device to
recognize that the originating device has, for example,
priority access to bandwidth when operating within the
network.

Importantly, the particular nature of the request or event
trigger is broad and need not be limited by the examples
discussed herein. One skilled in the art should recognize that
a system implemented in accordance with the presently
disclosed embodiments is capable of responding to a vast
collection of events in accordance with the methods
described herein. The ability to provide business and policy
rules to dynamically drive responses to, or store contextual
information within, a system event, device, or trigger, is
limited only by the nature of the actions which may be
accounted for by the particular policy rules or the type of
data that is capable of being described by metadata.

Referring again to the figures, FIG. 7 is an operational
flow diagram illustrating one example of a management
device parsing an event and/or trigger. In certain embodi-
ments employing the DEN-ng approach described above, all
types of events and triggers may be handled in substantially
the same way. In the event that that special processing is
required, the standard parts of the custom events and meta-

30

40

45

55

60

22

data will be detected and interpreted in order to allow the
management system to dynamically process the request at
runtime without having to be recorded. At block 700, the
request is parsed, and a parse tree is produced at block 702.
Any type of parse tree may be used, though a preferred
embodiment may use a constituency-based parse tree, where
the grammar differentiates between terminal and non-termi-
nal categories. Further, the system context, including when
the parsing operation was started and completed, as well as
any other data (e.g., special libraries or routines that were
called by the parsing process in order for it to complete),
may be recorded as metadata and/or annotations at blocks
704 and 706. For example, the DEN-ng information model
allows for an annotation to be added as a type of metadata.
However, other information models may choose to differ-
entiate between metadata and annotations. If this is the case,
both types of information may be added in block 706.

The management entity may perform named entity rec-
ognition at block 708. Block 708 may further include word
sense disambiguation. In general, a named entity is an Entity
that is an instance of a pre-defined category of interest, such
as the name of a device, a location, an IP or MAC address
of'a device, or even a date or time expression. Such Entities
typically have special significance in data processing opera-
tions. However, when occurring in free text, named entities
may be difficult to recognize due to different variations in
their declaration or use (e.g., “Dr. Smith” vs. “Harold” vs.
“Harold Smith, Ph.D.”), ambiguity (e.g., is “June” a Person
or the name of a Month, or is “Washington” a Person or a
Location), usage (e.g., “edge router” vs. “core router”),
sentence structure (e.g., the presence or absence of different
parts of speech, punctuation, spelling, spacing, and the like),
and the like. Hence, different types of disambiguation may
be preferred. These take the form of different processes, such
as format detection, tokenization, sentence splitting, part of
speech tagging, and others, some or all of which may be
employed in block 708. At blocks 710 and 712, any metadata
or annotations may be detected and added as part of this
process.

Further, at block 714, the management entity may option-
ally perform semantic role labeling. Semantic role labeling
typically identifies constituents that fill a semantic role for
each verb in a sentence (e.g., the arguments to a predicate).
For example, a management entity may use a combination
of a manual classifier augmented with various types of
machine learning (e.g., for determining starting and ending
positions for each argument that is associated with a verb),
enabling supplemental linguistic information to be com-
bined with linguistic and structural constraints by explicitly
incorporating inferences into the decision process. At blocks
716 and 718, any metadata or annotations may be detected
and added as part of this process.

At block 720, the management entity may optionally
perform co-reference resolution. Co-reference resolution
may involve identifying entities that are related to each other
in different sentences (e.g., “Find an edge router that has at
least one congested port. Fix the port.”) At blocks 722 and
724, any metadata or annotations may be detected and added
as part of this process.

At block 726, the management entity may optionally
perform pragmatics analysis. Pragmatics analysis may
involve mapping a sentence to its intended meaning. This
may be accomplished using a set of transformations that use
a set of beliefs and goals. At blocks 728 and 730, any
metadata or annotations may be detected and added as part
of this process.

US 9,460,417 B2

23

While FIG. 7 makes reference generally to a network
system, the network system may be another form of distrib-
uted management system, such as storage management,
server management, cloud centers, data centers, or the like,
including any combination thereof. In accordance with the
preferred embodiment, an information model as further
described herein has been provided and stored in a database,
such as one or more databases 202, _, of FIG. 2. Additionally,
in accordance with that information model, a full topology
has been created for example using methods, for example,
disclosed in U.S. Pat. No. 8,019,838, which is herein incor-
porated by reference, which describes a process of using an
autonomic manager to construct Extended Finite State
Machines (“EFSMs”) in order to govern the operation of a
network element based on a set of available commands and
their effects at any particular state. Once an EFSM for a
network element has been created using the process as
described therein, the autonomic manager can orchestrate
the autonomous operation of a network element to ensure
the network element is configured to meet the service
requirements defined by policies. The operation of a network
element is governed by policies at the network level wherein
higher level policies determine the operational and service
requirements of network elements. In addition to the meth-
ods disclosed therein, various embodiments of the present
invention utilize policy rules to further orchestrate the
autonomous operation of a network element to add or
modify the behavior of a network resource as further
described herein. Additionally, various embodiments pro-
vide extendibility beyond recursive construction of state
machines. Specifically various embodiments are capable of
representing, recognizing, and dynamically responding to a
much broad range of network resource or object behavior
within a network system at runtime and without needing to
alter any underlying code.

For example, referring back to FIG. 5, at block 502, the
system may receive a request and/or event trigger. As
depicted in step 502, the request may result, for example,
from a new device connecting to a network and initiating a
request via dynamic host configuration protocol (“DHCP”)
or domain name system (“DNS”) query, Cisco discovery
protocol (“CDP”), link-layer datagram protocol (“LLDP”),
or similar communication protocols.

At block 504, the management device 400 recognizes and
dynamically responds to the request and/or triggered event
by parsing the request and/or triggered event in block 506.
At block 508, if the parsing of the request and/or triggered
event results in the discovery of one or more unknown
and/or ambiguous commands, then the management entity
330 retrieves appropriate information from the data reposi-
tories 320 to resolve the issue. For example, in the context
of the exemplary system of FIG. 3, the management entity
330 receives a set of management commands from the EMS
through its dedicated interface 351. The commands are
parsed by the management entity 330, analyzed by the
management logic 340, and result in a set of commands
being issued to the resource being managed 360 (e.g., a
network device). For example, in a non-limiting example, at
block 510, the management entity 330 may retrieve a set of
performance metrics from the data models. The data model
contains a logical representation of the device being man-
aged, and consists of a set of classes that represent its
configuration, capabilities, current performance metrics, and
the like. The management commands from the management
system 310 are sent over the dedicated management inter-
face 353 to the device, which executes the commands and
sends the resulting data back to the management system 310

10

15

20

25

30

35

40

45

50

55

60

65

24

via the dedicated management interface 354. A typical, but
non-limiting, example is to use these queries to calculate the
current state of the device, so that it can be compared to its
desired state.

At block 512, the management entity 330 then compares
the retrieved data from the device being managed to the ideal
values of those data. For example, in one embodiment, the
management entity 330 may retrieve a Service Level Agree-
ment, or policy rules that describe what action to take if
congestion is detected on a device interface, or the like, in
order to determine what the ideal values are. At block 514,
if the result of the comparison is true, then the current state
of'the device being managed is equal to the desired state, and
all functionality is covered as in block 526. If the result is no,
then at block 516, corrective action is taken using object
stitching, as is further described in connection with FIG. 13.
The object stitching operations are sent over the dedicated
management interface 353, and results of those operations
are returned over the dedicated management interface 354.
The management system 310 analyzes the results and then
replies back to the EMS over the dedicated management
interface 352, informing the EMS of the results.\

In accordance with embodiments herein, the management
device 400 may further process the request in accordance
with the one or more types of policy rules described herein
and defined by the information and/or data model. Addi-
tionally, a combination of metadata and context-aware
policy rules may be used to implement the system configu-
rations. For example, network management processes may
involve collecting data, making a decision based on that data
based and, potentially, their current values when compared
to a desired set of values, implementing a set of configura-
tion changes, and then testing the network to see if the
configuration changes the situation.

In additional embodiments, the management device may
determine one or more services or features requested by the
event and/or trigger by issuing a similar series of queries and
commands. For example, a request for the creation of a
private virtual local area network (“VLAN™) to transport
data, priority access to bandwidth, or other similar modified
connections may involve queries as to the current status of
various devices in the network and their current use of
resources. Once this is known, then the management device
can issue a set of commands to perform the request, either
on the original targeted device, or on another suitable device
(or set of devices). Alternatively, if it is imperative that the
originally targeted device is used, then the management
device may change the configuration of other devices, which
may offload the targeted device and free enough resources of
the targeted device to enable it to support the new request.

The entire sequence of actions may also be directed using
one or more types of policy rules obtained from mapping
model elements in the information model to model elements
stored in one or more data models. Using information
obtained from processing the request at step 506, manage-
ment device 400 compares the device configuration with the
proposed configuration defined by the data elements at block
512 in order to determine whether the data elements are
sufficient to allow operation or configuration of the device in
the manner requested and/or specified by the applicable
policy rules. At block 518, the management device 400 may
apply the stitched object(s) to update the device configura-
tion, as explained above. The remainder of the process
proceeds as previously described for FIG. 5.

In certain embodiments, the methods disclosed in accor-
dance with FIG. 5 may be used by a management device of
a system, e.g. a management device of a networking system,

US 9,460,417 B2

25

server, or any distributed environment, to further process
requests using metadata, as further described herein. Such
networking systems, for example, may employ the method
described in further detail by FIG. 5. In such embodiments,
a new vendor specific model of a device may issue a DHCP
query. The vendor specific device may optionally add meta-
data to the DHCP request. Such metadata may, by way of
non-limiting example, provide additional information about
the device itself or the context from which the DHCP request
was sent. The context of such data described by metadata is
not limited by the examples provided herein and may
include wide range of data, from links to personal profiles,
standards or best practices, priority authorizations that may
be used to affect system traffic flow, or any other multitude
of data contexts that may be recognized by the system in
order to trigger the execution of business rules and/or system
exclusions. Such data may be intentionally included within
the DHCP request by the initiator or may be stored by the
back-end of the system processing the request, wherein the
system may automatically embed information within the
request, such as describing the location from which the
request was sent, or the time of day, or known user autho-
rizations associated with the user device, or any other
context surrounding the request or event trigger that may be
relevant to the request.

As used herein, “metadata” refers to sets of metadata (i.e.
data describing other data or a set of objects) that are used
by the various embodiments to further dynamically define,
create, manage, and remove behavior at runtime without
changing code. By way of example and without limitation,
metadata may be either structure metadata and/or descriptive
metadata. Structural metadata contains information used to
describe the structure of computer systems and/or comput-
ing devices. Structural metadata may also provide a descrip-
tion of how the components of a device or object are
organized. For example, structural metadata may describe
device configuration or layout, such as the number and
layout of ports on a router or any other physical capability
that may span multiple physical devices. For example, a
given line card manufactured by vendor “A” may have eight
physical ports of a given type (e.g., “Ethernet”), whereas a
different line card manufactured by vendor “B” may only
have four physical ports of that same type (e.g., Ethernet).
Structural metadata may take into account this and other
types of physical capabilities of a managed entity.

Descriptive metadata contains information used to
describe details or aspects of an objections creation, use, or
purpose and may be used to, for example, locate the object,
such as by function, title, creator, description, keywords, or
function. Descriptive metadata may also describe informa-
tion about the context which an event, trigger, or event
giving rise to a trigger was performed. For example, descrip-
tive metadata may provide information regarding the loca-
tion, time of day, or nature of the event or trigger. Descrip-
tive metadata may also contain descriptions of the user of the
device or device itself from which the event or trigger
originated, such as user or device security authorizations,
dataflow priorities, default languages, historical behavior,
etc.

Metadata may be embedded in any medium that is suit-
able for storing the particular type of data, such as protocol
requests, user triggered events (e.g., based on GPS or
swiping of security credentials to access areas of a building
covered by a network), emails, SMS messages, video, policy
enabled desktop control, VPN connections, queries within a
server, or any other multitude of events and/or triggers
which it may be advantageous for a system or network to

10

15

20

25

30

35

40

45

50

55

60

65

26

recognize and dynamically respond to. Advantageously, and
in one embodiment, metadata may be considered one form
of a policy rule of any type and level of abstraction. In this
embodiment, metadata may be information attached to the
use of different types of policy rules.

In accordance with various embodiments disclosed
herein, an information model may be provided representing
abstractions and capabilities of the various entities in a
managed environment. In the preferred embodiment, a
Directory Enabled Networks (“DEN-ng”) information
model is used is used as part of the implementation. U.S. Pat.
No. 7,542,956, which is herein incorporated by reference,
describes a process for providing and deriving DEN-ng
information models, data models, and ontology models
according to the DEN-ng methodology. DEN-ng informa-
tion models, as extended in accordance with the methods
disclosed herein, provide for contextual awareness that
allow changes in system context to trigger execution of one
or more processes in accordance with certain policy rules.
DEN-ng further allows for single information model to
account for diverse information that may needed to manage
a complex system requiring cross-expertise spanning a mul-
titude of diverse fields. To this end, information models,
such as DEN-ng, provide a common framework to support
varying, underlying data models. DEN-ng models define are
cable of defining a set of classes and subclasses that allow
instantiation of objects and generation of object instances
with sub-class data using one or more patterns as described
herein. Although DEN-ng defines a layered information
model approach, one skilled in the art would readily recog-
nize that the embodiments as described herein are not
limited to a layered information model, but rather may be
implemented by other information models providing a suf-
ficient definition of classes and relations such to enable
instantiation of required subclasses into various data models
and further in accordance with applicable business or policy
rules.

In addition to the functionality provided by information
models such as DEN-ng, systems implementing the methods
described herein support additional context-awareness
across not only diverse object types, but also diverse object
behavior. Through the provision of various policy or busi-
ness rules, systems implementing the methods as described
herein allow for design of contextually aware systems that
have a unique degree of scalability and recyclability. Policy
rules interact with the dynamic object-oriented information
model, and hence, the set of dynamic object-oriented data
models produced from the dynamic object-oriented infor-
mation model, using pre-defined control points, typically at
the data model level. The set of policy rules enable addi-
tional behavior to be performed before or after an object is
invoked and instantiated from the data models via the data
model control points. Policy rules thus allow for more
complex types of behavior to be dynamically modified and
added at runtime, either through patterns (e.g., the strategy
pattern) or through executing one or more policy rules.

For example, metadata may be both attached to policy
rules, but also change the content and structure of the policy
rule itself. This is because metadata can specify the use, at
runtime, of object stitching, which can be used to change the
various components comprising a policy rule. Furthermore,
the use of object stitching may enable the structure and/or
behavior of the policy rule to be dynamically changed, at
runtime, without changing code or data in supporting reposi-
tories.

Information models as described above can act as plan-
ning mechanisms for system objects. Just as objects can be

US 9,460,417 B2

27

arranged in a hierarchy by an information model, policy
rules can also be arranged in a hierarchy. In this scenario,
policy rules whose actions are lower in the hierarchy can be
grouped together to form conditions for policy rules that are
higher in the hierarchy. In this way, the results of lower-level
policy rules can be used as a “micro-level adjustment” for
higher-level policy rules. In addition, the higher-level,
“macro-level adjustment” policy rules can be of mixed types
(e.g., event-condition-action (“ECA”™), goal, and utility func-
tions) as well as of mixed implementation languages.

For example, the actions of a policy rule can be used to
dynamically control the instantiation of new objects, as well
as to determine when to use a current object instance instead
of instantiating additional model elements. Specifically,
policy rules are used to control which types of instances are
used in order to represent and control the underlying behav-
ior of objects depending on the type of the object or
managed entity, and the context of the object and/or man-
aged entity’s use. Thus, resources and objects may be of
diverse types and be used by a system in a diverse set of
contexts, but policy rules may dynamically respond to these
factors to control and optimize the instantiation of sub-
classes in order to properly execute modifications to a
system resource or to a managed entity dynamically at
runtime and without changing any underlying code. As one
skilled in the art would recognize, the particular use of
policy rules is necessarily dependent on the type of the
system involved and desired nature of the system manage-
ment. Methods as disclosed herein allow for scalability and
adaptability by allowing policy rules to account for and
implement a broad range of complex behaviors. Moreover,
complex policy rules can be combined into a higher-level
strategy approach wherein lower-lever policy rules can be
used as preconditions for the execution of higher-policies,
further facilitating adaptability and scalability of the various
embodiments.

Referring now to FIG. 8, a diagram of an exemplary use
of policy rules to control state transitions is shown. A
StateMachine 802 is defined. In DEN-ng, for example, a
StateMachine is an abstract superclass that models different
types of behavior that can be represented by different types
of State Machines. A State Machine is made up of a set of
states, state transitions, and actions. This class is the parent
of different subclasses, such as ExtendedFiniteStateMa-
chine.

A State 804 is defined as a unique collection of informa-
tion, valid during a particular time period during the life of
an object, during which one or more of the following apply:
(1) one or more of its attributes each has a range of values
that are unique to this particular state; (2) all required
relationships meet the following conditions that are unique
to this particular state: a) owned containment attributes
contain (or not) references to created (or destroyed) rela-
tionships, and b) in the case of relationships that are realized
by association classes, any communication required between
classes used to implement the relationship and the classes
that the relationship connects has been completed; (3) the
object can perform one or more internal actions that are used
to either maintain its current state or to transition to a new
state. Internal actions are not visible outside of the object,
and hence other objects and states do NOT depend on
internal actions performed; (4) the object can perform one or
more external services (in contrast to internal activities,
external services are visible to other objects and states, and
hence represent dependencies and control points that may
have far-reaching effects); (4) the object waits for an exter-
nal event to trigger a new action. The ContainsState 807

10

15

20

25

30

35

40

45

50

55

60

65

28

composition ensures that for every StateMachine 802, at
least one State 804 is provided, and that if a State is
instantiated, it can only belong to one StateMachine. Fur-
thermore, since this is a composition, any operation applied
to the composite (StateMachine 802) is also applied to all
constituent components (i.e., States). The ContainsState 807
composition has special semantics that are realized by the
StateMachineStateDetails 806 association class. This
enables a class, with its attributes, methods, and relation-
ships, to realize the semantics of the composition.

PolicyRuleGovernsStateTransition 808 defines the set of
PolicyRules 810 that are used to govern the behavior of
States 804 in a StateMachine 802 using the StateMachin-
eStateDetails 806 association class. This is a complex aggre-
gation, and may need to change according to context. Thus,
it is realized as an association class PolicyRuleStateTransi-
tionDetails 809. This aggregation defines the set of Poli-
cyRules that govern this particular StateTransition for this
particular StateMachine. PolicyRuleStructure 810 defines an
abstract superclass that defines common characteristics and
behavior for different types of PolicyRules (e.g., Event-
Condition-Action, Goal, and Utility Function Policies,
which are defined as subclasses in blocks 816, 818, and 820
respectively). PolicyRuleStructure 810 aggregates its own
specific type of metadata using the PolicyRuleHasMetaData
aggregation 813, which defines which set of Poli-
cyRuleMetaData 814, which enables specific subclasses of
the MetaData class to be defined that are appropriate for
capturing the metadata concerning different types of policy
rules (i.e., their version, when they can be applied, the
execution order of their actions, and the like). The above
illustration is a simplified model of an exemplary DEN-ng
implementation and should not be construed as limiting the
principles disclosed herein.

In summary, different types of PolicyRules can control
when a StateTransition is allowed to occur. The StateTran-
sition represents the transition from one 804 State in a
StateMachine 802 to a different State 804. The use of these
two association classes enables attributes and behavior spe-
cific to the StateTransition, as well as between which source
and target states, to be captured in an extensible way. In
addition, the PolicyPattern can be applied to each associa-
tion class; this enables changes in context to trigger the use
of new PolicyRules; the actions of the new PolicyRules can
then be used to alter the semantics of the StateTransition. For
example, different States may have different attributes asso-
ciated with them, such as their weight and alphabet used.
This structure enables any type of policy rule to dynamically
change how a StateMachine composites its States, and
define what conditions must be met for a State to transition
to another State.

Information models implemented using DEN-ng
approaches and/or state transitions may be further extended
to support multiple types of policy rules. The embodiments
support ECA (event-condition-action) strategies, as well as
derivative forms of ECA, such as condition-action (which
are desirable for expert systems), goal policies, and utility
functions, each of which may be suitable to particular
system applications. For example, an ECA policy specifies
an action to move from state 1 to state 2; a goal policy
specifies a desired set of states, any of which is acceptable,
given some criteria; a utility function assigns a value to each
resulting state and tries to maximize the “best” result. More
importantly, current embodiments extending the DEN-ng
model abstracts each of these concepts such that the system
designer can provide policy rules that dynamically mix and
match these policies and implementation technologies (such

US 9,460,417 B2

29

as Drools, Java, and/or JavaScript) in order to optimize
management of system resources.

Additional embodiments further extend the information
model and context-aware policies described herein in order
to provide the dynamic capabilities as a series of context-
aware patterns. In these embodiments, context-aware poli-
cies rules may be made part of the design in a repeatable and
scalable manner. In addition, embodiments provide the
ability to enable different policy rules to work with each
other; for example, this enables an event to initiate changes
to be applied to multiple devices in multiple administrative
containers. Further embodiments may define multiple types
of metadata for each type of policy rule used.

Referring now to FIG. 9, which illustrates an exemplary
operational flow diagram that uses the information model to
resolve problems encountered in the parsing of events and/or
triggers. In FIGS. 5 and 7, it may be assumed that the event
and/or trigger contained instructions to the management
device that defined the operations that the management
device was supposed to perform. Additionally, using an
information model, and data models derived from an infor-
mation model as described herein, it is possible for the
management entity to correctly interpret the instructions
contained in the event and/or trigger, even though said
instructions contain errors, missing data, incorrect data, and
the like. An exemplary set of methods for detecting and
correcting these and similar problems are illustrated in FIG.
9.

In some embodiments, resolving problems with parsing
an event or trigger may be done using the knowledge present
in the information and data models. In such embodiments,
the management system 310 first initializes appropriate
processing logic in block 902. In block 904, the parse tree
from parsing the event or trigger is analyzed to identify the
set of terms, commands, and other data that is either ambigu-
ous, not present in the current set of data models being used,
or which presents other problems that prevent the manage-
ment system 310 from responding to the event or trigger. If
no problems are identified, then this method finishes. Oth-
erwise, in block 908, the management system creates a loop
to process each unknown element in the parse tree of the
event or trigger that contains an “unknown” term (i.e., a term
causing a problem within the system). The processing starts
by mapping each unknown term to at least one model
element in the information model. If the management sys-
tem 310 receives, for example, a portion (but not all) of a
command via dedicated interface 351 from a remote entity
(e.g., an EMS or NMS), then the management system 351
may not understand how to process or respond to the
command. This may be the result of loss of data in the
communication between the remote entity and the manage-
ment system 310. Accordingly, in block 910, if the manage-
ment system 310 is not able to understand a received event
or trigger, management system 310 tries to identify the
command (or data) by mapping the portion of the received
command (or data) to an object that is known or stored
within the information and/or data models.

If the unknown term can be mapped to a model element
in the information model, then the management system 310
has successtully recognized the unknown term by matching
it to a model element. In this scenario, processing proceeds
from block 912 to mapping the matched model element in
the information model to at least one model element in a data
model in block 914. This reifies the abstract set of concepts
contained in the information model to a physical form. At
block 916, if this mapping has succeeded (i.e., the manage-
ment system 310 has been able to create one or more model

10

15

20

25

30

35

40

45

50

55

60

65

30

elements in a data model that can be instantiated and used to
respond to the query or event), then execution continues to
block 926, where an object is instantiated for each matched
model element in the data model. If the instantiation is
executed without any problems at block 928, then the
metadata for all objects are updated and saved at blocks 930
and 932, respectively. This method then completes, and the
management system 310 may then continue with responding
to the received event or trigger.

If the object instantiation in block 926 was not successful,
then the context of the system is collected and the metadata
is updated and saved in block 934. Error processing is then
initiated in block 936. The result of the error processing will
determine if this is a fatal error. For example, the manage-
ment system 310 may be either not able to (1) execute one
or more commands received, and/or (2) understand one or
more data items that were received as part of the event or
trigger. If this is a non-fatal error, then the management
system 310 may try to continue to either execute the one or
more received commands that it was not able to before, or
will try again to parse the commands and/or data received.

If the result of either block 912 (i.e., if the unknown term
could be mapped to at least one model element in the
information model) or block 916 (i.e., if the model element
in the information model could be mapped to at least one
model element in at least one data model) is no, then
execution continues to block 918, where the metadata is
updated for all affected objects. At block 920, one or more
types of specialized data structures are created to facilitate
querying the information model to see if any similarly
named elements exist. A preferred implementation will
typically use either a Deterministic Acyclic Finite State
Automaton (DAFSA) or a Trie in order to better represent
the characteristics and behavior of the set of unknown terms.
A DAFSA is a data structure that represents a set of strings
in such a way as to enable querying the members of the data
structure to see if an input string belongs to the DAFSA in
a time proportional to its length. It is similar to a trie, but a
DAFSA is typically more space efficient. In alternative
embodiments, a Trie can be used, because despite efficiency
concerns, it may be capable of more easily embedding
additional information, such as metadata, that can be used to
describe additional information about the string. For
example, instead of simply having a string labeled “edge
router,” a Trie could very easily associate additional text or
metadata with the string, which could then be used to more
easily determine if the string representing an object (or
describing or defining data) is the actual string desired or
not.

Regardless of data structure, in block 922, the manage-
ment system 310 attempts to create at least one new model
element in the information model to represent the unknown
term. The results of this operation are checked in block 923.
If successful, then execution continues to block 924, which
then creates at least one corresponding model element in at
least one data model. The results of this operation are
checked in block 925. If this is successful, then execution
continues to block 926, and operation continues as previ-
ously described. If the results of either block 923 or 925 are
not successful, then in both cases, execution proceeds at
block 934, and operation continues as previously described.

Referring now to FIG. 10a, which illustrates an exem-
plary operational flow diagram that initializes the manage-
ment system and the management device to respond to
events and/or triggers, in accordance with various embodi-
ments. The management system 310 first initializes appro-
priate processing logic in block 1002. In block 1004, the

US 9,460,417 B2

31

management system 310 parses the header of the received
event or trigger. In block 1006, the management system 310
determines if the event header is well formed (i.e., if the
event or trigger contains valid commands and/or data). If it
is not, then processing proceeds to block 1030, where the
context of the system is collected and the metadata is
updated and saved in block 1030. Error processing is then
initiated in block 1032. The result of the error processing
will determine what further actions the management entity
310 will take. For example, with certain fatal errors (e.g., if
this event or trigger is malformed and cannot be acted upon),
the management system 310 may elect to send the remote
system an error event describing the problem. After that,
processing will stop and this method exits. With non-fatal
errors, then the management system may elect to operate on
the portions of the event or trigger that it understood.

If the management system 310 determines (in block 1006)
that the event is well-formed, then in block 1008 it checks
to see if the event has an associated payload, for example, by
checking an event’s header. If the event or trigger does have
a payload, then the management system sets up a loop to
iterate through each separate payload in the event or trigger
in block 1010. Each payload is parsed in block 1012. If the
parsing of a particular payload does not succeed, then at
block 1014 execution continues at block 908 in FIG. 9.
Otherwise, the payload is parsed and its parse tree is added
to the parse tree of the event, or the system determines that
no payload is present. In any event, execution continues at
block 1016.

At block 1016, the management system 310 has a com-
plete parse tree, representing the received event or trigger;
this includes any additional data, in the form of one or more
payloads. The management system 310 then attempts to map
each term (or set of terms) to at least one model element in
the information model. If, in block 1018, the management
system 310 determines that this operation is not successful,
execution continues at block 918 of FIG. 9. Otherwise,
execution continues to block 1020,

In block 1020, each matched model element in the infor-
mation model is mapped to at least one corresponding model
element in at least one data model. The results are verified
in block 1021. If unsuccessful, execution continues at block
918 of FIG. 9. Otherwise, execution continues to block
1022, where an object is instantiated for each matched
model element of a data model. Results are again verified in
block 1024. If successful, then the metadata for all objects
are updated and saved in blocks 1026 and 1028, respectively,
and the method terminates. Otherwise, execution continues
at block 1030, where the system context is logged, and the
metadata is updated and saved. Error processing is then
performed at block 1032 as previously described.

Processing of an exemplary event continues in FIG. 105.
FIG. 10a does the necessary initialization, while FIG. 1056
uses the various components in the management system to
respond to the event and/or trigger. In certain embodiments,
a number of commands, in the form of context-aware policy
rules, may have been sent by a remote entity through the
dedicated management interface 351 to the management
system 310. It is assumed that all policy rule commands
have been correctly parsed.

Inblock 1040 of FIG. 10, a data structure that is optimized
for querying the context of all parsed context-aware policy
rules (such as a DAFSA or a Trie) is created. Using this data
structure, the semantics of all of the context-aware policy
rules are analyzed and ordered by dependency, thereby
providing safe and optimal execution of the policy rules.
This results in ordering the policy rules into a graphical

10

15

20

25

30

35

40

45

50

55

60

65

32

structure, from which, in block 1044, the optimal execution
path (or paths) may be found using any desired algorithm,
such as Djikstra’s least cost algorithm.

The optimal path defines the order of execution of the
received policy rules. Each policy rule may be viewed as
changing the configuration and/or gathering operational,
administrative, management, and/or performance data, of a
set of manageable entities. The set of policy rules are
executed in block 1046 according to the optimal path. As
each policy rule executes, its operation is monitored in block
1048. If no problems are encountered, then in block 1050,
changes are made to all affected objects, their associated
metadata are updated, and all changes are saved. Execution
then continues to block 1052, which checks to see if
additional policy rules are waiting to be executed. If so, then
operation returns to block 1046; otherwise, this method
terminates.

If one or more problems are detected in the execution of
a policy rule, then in block 1054, the execution context of
that policy rule and all appropriate metadata are updated and
saved. Then, in block 1056, error processing is initiated in
order to determine the severity of the error. If the error is not
fatal, then processing may be able to continue to block 1052
as previously discussed. Otherwise, the method terminates
and the management system may take additional action as
appropriate.

Referring now to FIG. 11, which illustrates an exemplary
operational flow diagram for specifying and managing the
features and behavior of a set of managed entities through
the exchange of events and/or triggers, in accordance with
various embodiments. In block 1102, the system is initial-
ized. The information model, along with all applicable data
models, is retrieved in block 1104. The set of objects
contained therein are stored into a repository in block 1106.
The management system 310 then waits until an event or
trigger is received. In some embodiments, the set of opera-
tions may include a set of commands to execute and/or a set
of data to process. In addition, the set of operations may
specify, as part of the event or trigger, a set of manageable
entities upon which to operate. Hence, the remainder of this
method will: (1) parse the event or trigger to determine what
set of actions to perform, (2) identify any objects that are
referenced in the event or trigger and map them to an
equivalent set of manageable entities, (3) perform the
requested set of operations, and (4) verify that the requested
set of operations was successfully completed.

Accordingly, when an event or trigger is received in block
1108, it is parsed by the management system 310 in block
1110 to determine the set of operations to perform, to
convert any references to objects into manageable entities,
and to identify any data that was sent. In block 1112, for each
command that was identified in block 1110, a mapping
function is derived that identifies one or more model ele-
ments of the information model for each object in each
command identified in block 1110. Then, for each identified
model element in the information model, a second mapping
is defined to map said model element to at least one
corresponding model element in at least one data model.
This enables any objects that were explicitly referenced
and/or implicitly inferred by the set of Operations received
in the event and/or trigger to be understood (i.e., have their
syntax and semantics mapped to manageable entities in the
management system 310) and put in a concrete form in one
or more data models.

Execution now continues to block 1116, where the set of
model elements that have been mapped from the information
model to the at least one data model is stored in a second

US 9,460,417 B2

33

repository. In alternative embodiments, the information
model, all data models, and all changes to each, may be
stored in a single repository, in separate repositories, or in
any combination thereof.

In block 1118, the management system 310 will, for each
command, see if any model elements from any data model
are identified. If so, then the management system 310 will
instantiate one object that corresponds to each separate
model element. In one embodiment, in block 1120, the
management system 310 will store all such instantiated
objects in a third repository.

In block 1122, the management system 310 retrieves the
first requested operation. In block 1124, the management
system 310 retrieves any manageable entities that were
identified in the requested set of operations. In block 1126,
the management system 310 then executes the requested
operation. In block 1128, the management system 310
checks to ensure that this operation executed correctly. If it
did not, then in block 1130, error processing is performed.
The result of this error processing will determine whether
the method should retry the operation, or continue process-
ing any remaining operations in the request, or exit.

If, in block 1128, no errors were detected, then in block
1132, the management system 310 checks to see if any
additional operations from the original event or trigger are
waiting to be executed. If so, then processing returns to
block 1124 and execution continues as previously described.
Otherwise, execution proceeds to block 1134, where the
management system 310 verifies that the operation has been
correctly performed. If, in block 1134, the verification is
unsuccessful, then additional error processing may be per-
formed by the management system 310 to determine what
should be done. Otherwise, the method terminates.

Referring now to FIG. 12, which illustrates an example
operational flow diagram for translating or mapping a
request from a system or network entity to perform a set of
operations on a set of manageable entities. Examples of
operations include monitoring the state of the manageable
entities by, for example, retrieving the values of a set of
counters at pre-defined intervals, changing the configuration
of a device to add or remove services, and determining if a
device had an alarm, and the severity of said alarm. In some
embodiments, the mapping may identify manageable enti-
ties as well as policy rules within the system. At block 1202,
the method is initialized and the information model, along
with all applicable data models, is retrieved in block 1204.
In one embodiment, the set of objects are stored into a first
repository in block 1206. The management system 310 then
waits until an event or trigger is received in block 1208. In
block 1210, the received event or trigger is parsed in a
manner similar to that described in FIG. 7, and a parse tree
is created. The management system 310 then maps each of
the parsed elements to a set of manageable entities. In block
1210, it is assumed that one pass through the parser has been
accomplished. At block 1214, it is determined whether the
parser has successtully identified all terms and mapped them
to a set of manageable entities and whether any terms are
left. If no, the method terminates, as the command and/or
data have been successfully translated into manageable
entities. If terms are left that have not been mapped, then
execution proceeds to block 1216, where one or more of
several advanced methods for term identification may be
performed. If the output of the matching algorithm does not
find a match, then for the purposes of this invention, error
processing is initiated in block 1220. If there is a fatal error,
then the management system 310 will terminate this method

20

25

30

35

40

45

55

34

and take appropriate action. If there is a non-fatal error, then
the management system may try to continue the translation
process.

If the matching algorithm locates a match, then in block
1222, each model element from the information model that
was matched is combined with the results of the parsing
process from block 1210. When completed, each set of
model elements from the information model is mapped to a
corresponding set of model elements from at least one data
model. In block 1224, the management system 310 checks
to see if this process was successful. If not, execution
proceeds to block 1220, where error processing is initiated
as described above. If the process is successful, then each
model element from each data model may be enriched with
metadata in block 1226. This enables the management
system 310 to provide additional information, such as con-
text, to the instantiated objects.

In block 1228, the management system 310 checks to see
if there is repetition, duplication, or other effects that can
either be optimized and/or corrected. In some embodiments,
this may involve combining one or more mappings or the
management system 310 making additional inferences based
on semantics and policy rules that were unknown to the
sender. In such scenarios, execution is returned to block
1212, and processing continues as previously described. If
not, then in block 1230, an object is instantiated for each
model element from each data model. A final check is
performed at block 1232 to ensure that no more commands
are remaining. If so, then the method terminates; if com-
mands are remaining, then execution continues at block
1212 as previously described.

Referring now to FIG. 13, which illustrates exemplary
differences between traditional mechanisms for defining
behavior and using object stitching. Parts a) through c) of
FIG. 13 show a traditional way of defining new behavior.
Part a) illustrates separate classes having dependency on
each other. Part b) illustrates using the Open-Closed Prin-
ciple to create an abstract class. Part ¢) illustrates a concep-
tual diagram of object stitching using an information model
as opposed to inheritance. In this example, object stitching
enables the developer to write new code for new function-
ality without altering the existing code, thereby extending
the use of the Open-Closed Principle into enabling new
responsibilities to be accommodated without making any
changes to code of the affected classes.

In the parts ¢) through f) of FIG. 13, manipulation of
object instances is depicted. FIG. 13¢ shows an exemplary
pattern for performing object stitching. For example, Class
D1 1330 could define a Router Port, while Class D2 1340
could define a Protocol whose subclasses run on the Port of
the Router. This enables different Protocols to be instantiated
and run to provide different functions on the same Port.
Classes D3 1342 and D4 1344 are subclasses of Class D2
1340, and provide extensions of the functionality defined by
Class D2 1340. The composition 1350 enables Class D2
1340 to aggregate any number of object instances of Class
C 1320, such as subclasses of either class. Similarly, any
subclasses of either Class D1 1330 or Class D2 1340 can be
contained by an object instance of class D2 1340. Inheri-
tance principles ensure the same types of objects implement
the same interface. However, behavior is provided via object
composition using the aggregation 1350 and object stitch-
ing. This enables behavior to be altered at runtime by
compositing objects of type D1 with objects of type D2.
Since only object instances are being used, no code is
modified.

US 9,460,417 B2

35

Referring now to part d) of FIG. 13, Object A 1360 is
produced by instantiating class A 1310. In part ¢) 13e, a new
Object D3 1370 is instantiated. Object D3 1370 is the same
type of object as Object A 1360, enabling it to be treated the
same way as an instance of Object A 1360. Additional, as an
object instance, it exists at runtime and therefore, no modi-
fication of underlying code is required. Object D3 1370 has
an instance variable holding a reference to the object that it
is wrapping (in this case, object A 1360). In Figure part 1),
Object D4 1380 is instantiated and wraps Object D3. When
methods a method is called on object D4 1380, it calls the
same method on Object D3 1370, as illustrated by line 1382,
which in turn calls the same method on Object A 1360,
illustrated by line 1372. When the method of Object A 1360
finishes execution, its results are passed back up through the
chain. This allows decoupling of the Class A 1310 any
functionality that it is requesting as part of an aggregated
object.

Referring now to FIG. 14, which illustrates an exemplary
operational flow diagram for verifying that the configuration
changes operate as expected. When the management system
310 receives a request to validate the configuration changes
at block 1402, it initializes the management system at block
1404 and then retrieves the information model and all
necessary data models at block 1406. It then sets up a loop
to iterate through all affected model elements of each
affected data model at block 1408. Within this loop, it
retrieves the corresponding set of changed objects from the
system being managed 360 at block 1410. The management
system 310 then performs a series of tests. At block 1412,
error checking is performed to ensure no errors were
detected in retrieving the corresponding set of changed
objects. If an error was detected, then at block 1414, error
processing is initiated as previously described in connection
with FIG. 11.

If the result of the check for errors in block 1412 revealed
that no errors were found, processing continues to block
1416, where the management system 310 checks to see if
additional objects corresponding to other model elements of
other data models need to be retrieved in order to verify that
the configuration changes were executed correctly. If more
objects are needed, control returns to block 1410. Otherwise,
control proceeds to block 1418, where a check is performed
to verify that the set of objects corresponding to the changed
configuration match the set of objects that were used to
define the configuration changes. If these objects do not
match, then error processing is initiated in block 1420. The
result of the error processing will determine if this is a fatal
error, such that the validation process must be aborted. If
there is a non-fatal error, then the management system 310
may try to continue the validation process.

If'the objects do match, then this configuration change has
been validated. In block 1422, a check is performed to see
if additional model elements from additional data models
that define other configuration changes are required to be
performed. If so, then execution continues at block 1408.
Otherwise, this method terminates.

Referring now to FIG. 15, a high level block diagram
illustrating a more detailed view of a computing system
1500 useful for further implementing the management
device 400 according to embodiments of the present inven-
tion. The computing system 1500 is based upon a suitably
configured processing system adapted to implement an
exemplary embodiment of the present invention. For
example, a personal computer, workstation, or the like, may
be used.

20

25

30

40

45

36

In one embodiment, the computing system 1500 includes
one or more processors, such as processor 1504. The pro-
cessor 1504 is connected to a communication infrastructure
1502 (e.g., a communications bus, crossover bar, or net-
work). Various software embodiments are described in terms
of this exemplary computer system. After reading this
description, it becomes apparent to a person of ordinary skill
in the relevant art(s) how to implement the invention using
other computer systems and/or computer architectures.

The computing system 1500 can include a display inter-
face 1508 that forwards graphics, text, and other data from
the communication infrastructure 1502 (or from a frame
buffer) for display on the display unit 1510. The computing
system 1500 also includes a main memory 1506, preferably
random access memory (RAM), and may also include a
secondary memory 1512 as well as various caches and
auxiliary memory as are normally found in computer sys-
tems. The secondary memory 1512 may include, for
example, a hard disk drive 1514 and/or a removable storage
drive 1516, representing a floppy disk drive, a magnetic tape
drive, an optical disk drive, and the like. The removable
storage drive 1516 reads from and/or writes to a removable
storage unit 1518 in a manner well known to those having
ordinary skill in the art.

Removable storage unit 1518, represents a floppy disk, a
compact disc, magnetic tape, optical disk, etc. which is read
by and written to by removable storage drive 1516. As are
appreciated, the removable storage unit 1518 includes a
computer readable medium having stored therein computer
software and/or data. The computer readable medium may
include non-volatile memory, such as ROM, Flash memory,
Disk drive memory, CD-ROM, and other permanent storage.
Additionally, a computer medium may include, for example,
volatile storage such as RAM, buffers, cache memory, and
network circuits. Furthermore, the computer readable
medium may comprise computer readable information in a
transitory state medium such as a network link and/or a
network interface, including a wired network or a wireless
network that allow a computer to read such computer-
readable information.

In alternative embodiments, the secondary memory 1512
may include other similar means for allowing computer
programs or other instructions to be loaded into the com-
puting system 1500. Such means may include, for example,
a removable storage unit 1522 and an interface 1520.
Examples of such may include a program cartridge and
cartridge interface (such as that found in video game
devices), a removable memory chip (such as an EPROM, or
PROM) and associated socket, and other removable storage
units 1522 and interfaces 1520 which allow software and
data to be transferred from the removable storage unit 1522
to the computing system 1500.

The computing system 1500, in this example, includes a
communications interface 1524 that acts as an input and
output and allows software and data to be transferred
between the computing system 1500 and external devices or
access points via a communications path 1526. Examples of
communications interface 1524 may include a modem, a
network interface (such as an Ethernet card), a communi-
cations port, a PCMCIA slot and card, etc. Software and data
transferred via communications interface 1524 are in the
form of signals which may be, for example, electronic,
electromagnetic, optical, or other signals capable of being
received by communications interface 1524. The signals are
provided to communications interface 1524 via a commu-
nications path (i.e., channel) 1526. The channel 1526 carries
signals and may be implemented using wire or cable, fiber

US 9,460,417 B2

37

optics, a phone line, a cellular phone link, an RF link, and/or
other communications channels.

In this document, the terms “computer program medium,”
“computer usable medium,” “computer readable medium”,
“computer readable storage product”, and “computer pro-
gram storage product” are used to generally refer to media
such as main memory 1506 and secondary memory 1512,
removable storage drive 1516, and a hard disk installed in
hard disk drive 1514. The computer program products are
means for providing software to the computer system. The
computer readable medium allows the computer system to
read data, instructions, messages or message packets, and
other computer readable information from the computer
readable medium.

Computer programs (also called computer control logic)
are stored in main memory 1506 and/or secondary memory
1512. Computer programs may also be received via com-
munications interface 1524. Such computer programs, when
executed, enable the computer system to perform the fea-
tures of the various embodiments of the present invention as
discussed herein. In particular, the computer programs,
when executed, enable the processor 1504 to perform the
features of the computer system.

Although specific embodiments of the invention have
been disclosed, those having ordinary skill in the art will
understand that changes can be made to the specific embodi-
ments without departing from the spirit and scope of the
invention. The scope of the invention is not to be restricted,
therefore, to the specific embodiments, and it is intended that
the appended claims cover any and all such applications,
modifications, and embodiments within the scope of the
present invention.

What is claimed is:
1. A method for specifying the features and behavior of a
set of system resources, wherein the method comprises:
providing a management entity having a processor and a
memory;
providing an information model to represent features,
behaviors, or relationships of a set of system resources,
wherein said information model includes a first set of
model elements;
deriving, by the management entity, a data model from the
information model, wherein the deriving comprises
mapping one or more elements of the first set of model
elements into a second set of model elements of the
data model;
storing the data model into a first repository;
deriving, by the management entity, one or more data
objects from the data model associated with a behavior,
feature, or relationship of a system resource; and
executing, by the management entity, one or more process
to effect one or more system changes specified by the
one or more data objects.
2. The method of claim 1, wherein the second repository
and first repository are a same repository.
3. The method of claim 1, wherein the system resource is
a feature, a relationship to another system resource, a
behavior, a service, or configuration of a network device.
4. The method of claim 1, wherein deriving one or more
data objects further comprises mapping the one or more data
objects onto wrapped object instances at runtime, wherein a
new object instance is created and has an instance variable
holding a reference to a wrapped object instance that the new
object instance is wrapping, and wherein in response to the
wrapped object finishing execution of a method, results are
passed back to the new object instance.

10

15

20

25

30

35

40

45

50

55

60

65

38

5. The method of claim 1, wherein the one or more data
objects are derived and wrapped by a new object instance
based on a set of policy rules defined by the information
model.

6. The method of claim 5, wherein the policy rules are
executed by metadata associated with the system resource.

7. The method of claim 5, wherein metadata is used to
change the structure, content, or behavior of the policy rules.

8. The method of claim 1, wherein the one or more data
objects are derived in response to a system event, and
wherein at least one new data object instance is created,
wrapping a wrapped object instance.

9. The method of claim 8, wherein the system event
comprises satisfaction of one or more pre-conditions or
post-conditions specified in the information model or data
model, and wherein a method call to the new object instance
is passed to the wrapped object instance via an instance
variable such that the wrapped object instance executes and
passes results to the new object instance.

10. A method of configuring a manageable entity, com-
prising:

providing an information model stored in a first reposi-

tory, wherein said information model defines a set of
model elements, wherein the model elements specific
features, behaviors, or relationships of one or more
manageable entities;

providing a managing device having a processor and a

memory, wherein said managing device is in commu-
nication with said first repository and is configured to
respond to a system event;

storing to a second repository, a plurality of code sections

for deriving a set of one or more data models from the
information model, wherein said each data model in
said set of data models comprises a subset of said set of
model elements;

wherein said managing device is further configured to

respond to said system event by:
recognizing the system event;
processing the system event to determine one or more
requested configurations for a manageable entity;

retrieving a plurality of code sections from the one or
more data models for managing a requested configu-
ration of said manageable entity;
constructing one or more objects that represent the
requested configuration for the manageable entity; and

executing one or more processes that implement the
requested configurations specified by the one or more
objects.

11. The method of claim 10, wherein the information
model further defines a set of policy rules to manage device
operations.

12. The method of claim 11, wherein the plurality of code
sections are executed according to the policy rules defined
by the information model.

13. The method of claim 11, wherein the system event
further comprises metadata embedded in the system event
that may be used to change the structure, content, or behav-
ior of the policy rules.

14. The method of claim 13, wherein changes to the
policy rules are used to derive metadata and new policy rules
in order to further change the configuration of one or more
devices.

15. The method of claim 13, wherein metadata that is
missing, incomplete, or incorrect can be detected by the
management device and corrected in order to configure the
device.

US 9,460,417 B2

39

16. A configurable network for specifying the features and
behavior of a set of network resources comprising:

at least one processor coupled to a memory, wherein the
memory stores an object-oriented information model,
and instruction code executable by the processor to
cause that processor to perform at least one transfor-
mation process that converts all or part of the informa-
tion model into all or part of at least one data model
wherein the processor:

modifies instance data of all or part of at least one object
created in the object oriented data model based on
received network events;

invokes a mapping function to interpret the modified
instance data by mapping the modified instance data to
one or more predefined control points in the codes of
the one or more data models according to a policy rule;
and

executes the codes of the one or more data models to
output network functions to configure a network
resource according to the modified instance data,
wherein none of the code in the information model
changes during the configuration.

10

15

20

40

17. The device of claim 16, wherein the modified instance
data comprises at least one of a modified class, attribute,
operation, or relationship instances that have been added,
deleted, or altered from the network resource, and wherein
a new object instance is created and has an instance variable
holding a reference to a wrapped object instance that the new
object instance is wrapping, and wherein in response to the
wrapped object finishing execution of a method, results are
passed back to the new object instance.

18. The device of claim 16, wherein context-aware policy
rules may be used to modify the instance data such that a
new object instance is created and wraps and instance of at
least one of the objects created in the object oriented data
model.

19. The device of claim 18, wherein metadata may be
used to modify the structure, content, or behavior of the
context-aware policy rules.

20. The device of claim 16, wherein the processor is
further configured to detect context changes and to perform
object wrapping to change the configuration of at least one
device without changing code of the device.

#* #* #* #* #*

